Tema Nombre Descripción
TP03 Archivo Burbidge et al. 1957. B2FH burbidge_RMP_29_547_1957

Artículo que complementa las lecturas para el TP03.

El paper Synthesis of the Elements in Stars resulta en el artículo inicial que analiza y describe la sintesis de los elementos químicos en las estrellas y sobre el que se basan todos los estudios y propuestas siguientes.

URL Cosmos - capitulo 7
Archivo Keshav Krishna et al., 2013

Se sugiere la lectura del paper de Krishna et al. (2013) el cual resultará de interés para comprender el concepto de "Factor de Enriquecimiento" aplicado a cuestiones ambientales.

Krishna et al 2013. Assessment of heavy metal contamination in soils around chromite mining areas, Nuggihalli, Karnataka, India. Environ Earth Sci 70: 699-708 

Archivo TP 03 geoquimica Diagramas multielementos Factor de Enriquecimiento
TP 04 Archivo TP 04 Meteoritos
Archivo Boynton 1984

se adjunta el paper de Boynton 1984 para trabajar el día miercoles.
Boynton, W., 1984. COSMOCHEMISTRY OF RARE EARTH ELEMENTS, METEORITE STUDIES

TP 05 Archivo IGPET - SetupIgpet_Win_2017_Teaching
Archivo TP 05 Elortegui Palacios et al. ,2005
Archivo Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal Melts- Bea 1996
Archivo TP 05 geoquimica procesos endogenos REE (modelo de carga de datos)

Se ajunta archivo de hoja de cálculo donde se muestra la organización de datos para cargar en IGPET

Archivo TP 05 geoquimica 2023 procesos endogenos REE

Se adjunta el TP 05 el cual podrá realizarse en hoja de cálculo o bien en software igpet (provisto en su versión para estudiantes). 

Se provee además:

a-literatura sugerida

2-modelo de carga de datos para igpet

3-archivo spider.dia para reemplazar en igpet y poder graficar con Boynton (1984)

Archivo Archivo con datos de BOYNTON 1984
Archivo IGPET 2011 (crackeado)

Se adjunta versión funcional de IGPET 2011 con archivo spider.dia modificado

TP06 Archivo TP 06 geoquimica ELEMENTOS TRAZA nerst

Se presenta el TP 06 el cual deberá ser realizado en planilla de cálculos o en papel semilogarítmico

TP07 (MONOGRÁFICO UNO) Archivo TP 07 BOX MODEL

TP 07 -  Ciclos Geoquímicos

Modelos de Cajas

Carpeta Biblio (algunos papers)

Articulos a tener en cuenta

TP09 (atmósfera) Archivo Sabine, 2004
Archivo Zalasiewicz et al., 2008
Archivo Archer, 2005
TP 12 - Ambiental Archivo Davutluoglu, et al 2011 Assessment of Metal Pollution in Water and

The aim of this study was to assess the level of heavy metals (Al, Cd, Cr, Cu, Fe, Mn, Ni,
Pb, and Zn) contamination and enrichment in the surface sediments of the Seyhan
River, which is the receiving water body of both treated and untreated municipal and
industrial effluents as well as agricultural drainage waters generated within Adana,
Turkey. Sediment and water samples were taken from six previously determined
stations covering the downstream of the Seyhan dam during both wet and dry seasons
and the samples were then analyzed for the heavy metals of concern. When both dry
and wet seasons were considered, metal concentrations varied significantly within a
broad range with Al, 7210–33 967 mg kg
1 dw; Cr, 46–122 mg kg1 dw; Cu, 6–57 mg kg1
dw; Fe, 10 294–26 556 mg kg1 dw; Mn, 144–638 mg kg1 dw; Ni, 82–215 mg kg1 dw; Pb,
11–75 mg kg
1 dw; Zn, 34–146 mg kg1 dw in the sediments while Cd was at nondetectable levels for all stations. For both seasons combined, the enrichment factor
(EF) and the geo-accumulation index (
Igeo) for the sediments in terms of the specified
metals ranged from 0.56 to 10.36 and
2.92 to 1.56, respectively, throughout the lower
Seyhan River. The sediment quality guidelines (SQG) of US-EPA suggested the sediments
of the Seyhan River demonstrated ‘‘unpolluted to moderate pollution’’ of Cu, Pb, and
Zn, ‘‘moderate to very strong pollution’’ of Cr and Ni. The water quality data, on the
other hand, indicated very low levels of these metals suggesting that the metal content
in the surface sediments were most probably originating from fine sediments transported along the river route instead of water/wastewater discharges with high metal
content. 

Archivo TP 12 - AMBIENTAL
TP14 (técnicas analíticas) Archivo TP 14 (Técnicas analíticas)
Archivo REPORTES NI 43-101
Lecturas Sugeridas Carpeta Railsback AN EARTH SCIENTIST´S PERIODIC TABLE OF THE ELEMENTS AND THEIR IONS

Archivo original publicado en la revista Geology, su traducción para el lector de habla hispana (publicada en la Revista Mexicana de Geociencias) y la tabla en Alta Resolución para imprimir y tener de consulta. 
Este artículo complementa la clase teórica sobre las distintas clasificaciones periódicas de los elementos y los distintos tipos de tablas que presentamos.

Archivo Origin of the Earth A proposal of new model called ABEL

Maruyama, S., & Ebisuzaki, T. (2017). Origin of the Earth A proposal of new model called ABEL. Geoscience Frontiers, 8(2), 253-274.

Se adjunta como lectura complementaria a los temas de FORMACIÓN DE LA TIERRA en el cual encontrarán discusión a un modelo llamado ABEL y, si resulta de interés, mucha bibliografía de referencia.

Archivo Burbidge et al., 1957 Synthesis of the elements in Stars

Acerca del origen de los elementos en las estrellas. Para complementar bolillas y poner en contexto histórico.

Archivo Gerlach, T. , 2011. Emisiones_de_CO2_volcanes_vs_antropicas_EOS_2011

Gerlach, T. , 2011. Emisiones_de_CO2_volcanes_vs_antropicas_EOS_2011

Archivo Archer.2005. Fate of fossil fuel CO2 in geologic time

Archer.2005. Fate of fossil fuel CO2 in geologic time

Archivo Zalasiewicz et al, 2008. Are we now living in the Anthropocene

Zalasiewicz et al, 2008. Are we now living in the Anthropocene

Archivo Sabine, 2004. The Oceanic Sink for Anthropogenic CO2

Sabine, 2004. The Oceanic Sink for Anthropogenic CO2

Archivo ELEMENTS, 16(3), Junio 2020

Redox Engine of Earth

Archivo Albarede, F., 2009. Volatile accretion history of the terrestrial planets and dynamic implications.

Accretion left the terrestrial planets depleted in volatile components. Here I examine evidence for the hypothesis that the
Moon andthe Earth were essentially dry immediately after the formation of the Moon—by a giant impact on the proto-Earth—
and only much later gained volatiles through accretion of wet material delivered from beyond the asteroid belt. This view is
supported by U–Pb and I–Xe chronologies, which showthat water delivery peaked
,100 million years afterthe isolation of the
Solar System. Introduction of water into the terrestrial mantle triggered plate tectonics, which may have been crucial for the
emergence of life. This mechanism may also have worked for the young Venus, but seems to have failed for Mars.

Archivo COKER. 2007. Future research directions in exploration geochemistry, is there a future forntiers in geochemistry

Although there have been some major breakthroughs in the field of exploration geochemistry over the past ten years, there is still
much work to be done to advance the understanding of geochemical processes in different environments and proper application of
exploration geochemistry in mineral exploration. Some future research directions in exploration geochemistry will include: 1) detailed
mechanistic studies of processes affecting the mobilization, transport and fixation of metals that result in patterns of soil geochemistry,
gas compositions and other indicators of concealed mineral deposits; 2) further developments in heavy mineral indicator techniques,
starting with cheaper and more effective separation methodologies, to evaluate both their distribution and, in particular, their mineral
chemistry to determine elemental signatures for an expanded range of deposit types; 3) assessment of survival rates of minerals, in
particular sulphide minerals, dispersed through various types of surficial materials associated with a variety of mineral deposit types
in differing geological, surficial and climatic regimes globally; 4) evaluate the usefulness of the isotopes of various elements such as
Pb, Se, Cu and Hg which could potentially help determine the transport mechanisms for elements released from bedrock to sites of
surface accumulation; 5) further examination of the application of groundwater, and other types of water, to determine geochemical
signatures for different mineral deposit types in order to establish the potential, the limitations, and the workable protocols for these
methods; 6) development of field portable instrumentation for multielement and multispecies analysis of waters and soil gases; and, 7)
further refinement and development of visualization and interpretation techniques, particularly within a GIS context. There also needs
to be a return to the application of fundamental regional reconnaissance scale geochemical surveys and an increasing awareness of
the role that geochemical data can play as environmental baseline data. The biggest problem in the immediate future however, will be
the survival of “exploration geochemists” due to the aging of the small population of existing geochemists and the global decline in
opportunities for the education, development and training of young exploration geochemists.


Coker, W.B., 2007. Future research directions in exploration geochemistry: is there a future? In "Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration" edited by B. Milkereit. Frontiers in Geochemistry, Paper 19, 331-337

Archivo Kyser et al 2015 Applied Geochemistry in Mineral Exploration and Mining
Archivo Zoback 2001. Gran challenges in earth and environmental sciences, science, stewardship, and service for the twenty-first century
Literatura de Cátedra Carpeta Libros de consulta