SEMINARIO Nº6

TEMARIO: SERVICIO DE FRÍO – CICLO DE REFRIGERACIÓN

Problema 1 - De acuerdo con las siguientes condiciones de operación de un ciclo de refrigeración básico, calcular:

- 1. Los flujos de energía en el proceso del Ciclo de Refrigeración.
- 2. Eficiencia del Ciclo de Refrigeración.

Datos:

- Componente del sistema (refrigerante) = Propano puro.
- Caudal del Ciclo = 50kgmol/h

Condiciones de Operación:

- Compresor:
- Considerar que el refrigerante ingresa como vapor saturado.
- Condensador:
 - Temperatura Salida = 50°C.
 - El refrigerante debe salir como líquido saturado.
 - Caída de Presión, ΔP = 0,5atm.
- Válvula de Expansión: Se regula con el sistema.
- Evaporador:
- Temperatura de Salida = 20ºC
- Caída de Presión, $\Delta P = 0.1$ atm.

Resolver con la aplicación HYSYS. Aplicar el modelo termodinámico de Peng-Robinson.

Problema 2 - Una empresa dispone de hidrógeno, aire, propano, amoníaco y freón 23 (fluoroform), factibles de ser aplicadas como refrigerante en un ciclo de refrigeración. Determinar la capacidad [expresado en KW] que debe disponer el compresor para cada sustancia y realice un ranking de los mismos considerando potencia, caudal másico, temperatura de salida del compresor y característica del refrigerante.

Requerimientos técnicos:

- Caudal Molar del Sistema: 100 Kgmol/hr.
- Presión del flujo al ingreso del compresor: 2 atm.
- Presión del flujo a la salida del compresor: 15 atm.
- Temperatura del fluido al ingreso: -15ºC.

Resolver con aplicación HYSYS, y aplicar modelo termodinámico Peng-Robinson.

Problema 3 - En un ciclo de refrigeración que opera por compresión de un vapor con tetrafluoroetano, se dispone de los siguientes datos:

- <u>Compresor</u>: Ingresa a −10 °C y 2 bar, siendo su entalpia específica de 241 kJ/kg, y egresa a 16 bar, siendo su entalpia específica de 295 kJ/kg.
- <u>Válvula de Expansión</u>: Ingresa con una entalpia específica de 134 kJ/kg.

Determinar:

- a) Los calores referidos a la unidad de masa en el evaporador y en el condensador/enfriador.
- b) Potencia del compresor si el caudal másico es de 15 kg/s.
- c) Coeficiente de operación del ciclo.
- d) Eficiencia del Ciclo de Refrigeración.