TP N° 4 ANÁLISIS DIMENSIONAL

Fenómenos de Transporte
Ingeniería Química
Facultad de Ingeniería Universidad Nacional de Jujuy

MAGNITUDES FUNDAMENTALES	
LONGITUD	L
TIEMPO	t
MASA	M
FUERZA (F)	F
TEMPERATURA	Т
CANTIDAD DE SUSTANCIA	mol
INTENSIDAD DE CORRIENTE ELÉCTRICA	Α
INTENSIDAD DE CORRIENTE LUMINOSA	Cd

F = (m.a) / gc

ω	absolutas		
magnitudes		MAGNITUDES FUNDAMENTALES	
nagr	magnitudes ntífico)	LONGITUD	L
	magnit ntífico)	TIEMPO	t
Sistema de ingenieriles \	a de o cie	MASA	М
Sist	Sistema (terreno	FUERZA (F)	F
	Sis (te	TEMPERATURA	Т
		CANTIDAD DE SUSTANCIA	mol
		INTENSIDAD DE CORRIENTE ELÉCTRICA	Α
		INTENSIDAD DE CORRIENTE LUMINOSA	Cd

utos	
bsol	
d. A	
uni	
t. de	
Sis	

	Magnitudes fundamentales	Cegesimal (C.G.S.)	Práctico o de Giorgi (M.K.S.)	Inglés (F.P.S.)
	L	cm	m	ft
	t	S	hos	hos
\exists	M	g	kg	lb
	F	dyn	N M.L.t ⁻²	Poundal
	E	erg	J E FL	Poundal.ft
	Т	°C	°C	°F

)	Magnitudes fundamentales	Sist. Técn. métrico	Sist. Técn. inglés	Sist. Ing. métrico	Sist. Ing. inglés	
	L	m	ft	m	ft	
? ; —	t	hos	hos	hos	hos	
5	M	1 U.T.M = 1 kgf.s ² .m ⁻¹	1 slug = 1 lbf.s 2 ft $^{-1}$	kg	lb	
5	F	kgf	lbf	kgf	lbf	
	Т	°C	°F	°C	°F	
	Factor conversión	-	-	$gc = 9.81 \text{ kg.m/kgf.s}^2$	gc = 32.17	

SISTEMA INTERNACIONAL DE UNIDADES

MAGNITUD	SÍMBOLO
LONGITUD	m
MASA	kg
TIEMPO	S
TEMPERATURA	K
INTENSIDAD DE LA CORRIENTE ELÉCTRICA	А
INTENSIDAD LUMINOSA	Cd
CANTIDAD DE SUSTANCIA	mol
ÁNGULO PLANO	rad
ÁNGULO SÓLIDO	sr

Adicional

Factor por el que ha de multiplicarse la unidad	Prefijo	Simbolo
1012	tera	T
109	giga	T G M
106	mega	M
103	kilo	k
102	hecto	h
10 ¹	deca	k h da
10-1	deci	d
10-2	centi	
10-3	mili	c m
10-6	micro	μ
10-9	nano	n
10-12	pico	p f
10-15	femto	ſ
10-18	atto	a

 $\begin{array}{l} 1 \ t <> 10^{3} \ kg \\ 1 \ l <> 10^{-3} \ m^{3} \end{array}$ tonelada: litro: 1 bar $< > 10^5$ N/m² 1 bar $< > 10^5$ N/m² 1 A $< > 10^{-10}$ m 1 micra $< > 10^{-6}$ m 1 poise $< > 10^{-1}$ kg/(m·s) 1 centipoise $< > 10^{-3}$ kg/(m·s) bar: angstrom: micra:

poise:

MAGNITUDES DERIVADAS	

Magnitud	Nombre de la unidad	Símbolo	Expresión en función de las unidades fundamentales o derivadas
Superficie	metro cuadrado metro cúbico	m² m³	
Volumen	hercio	Hz	$(=s^{-1})$
Frecuencia	I por metro	m-1 ·	N a A
Número de onda	kilogramo por metro cúbico	kg/m ³	
Densidad	metro por segundo	m/s	
Velocidad	radiante por segundo	rad/s	
Velocidad angular Aceleración	metro por segundo por segundo	m/s ²	
	radiante por segundo por segundo	rad/s ²	
Aceleración angular	newton	N	$(=kg \cdot m/s^2)$
Fuerza	newton por metro cuadrado*	N/m ²	1
Presión (tensión mecánica) Viscosidad cinemática	metro cuadrado por segundo	m ² /s	
Viscosidad cinematica Viscosidad dinámica	kilogramo por metro por segundo	kg/m·s	$(=N\cdot s/m^2)$
	julio	1	(= N · m)
Trabajo, energía, cantidad de calor	julio por kelvin	J/K	1
Entropía Calor másico	julio por kilogramo por kelvin	J/(kg·K)	V - 1400
Potencia	vatio	W	(= J/s)
Conductividad térmica	vatio por metro por kelvin	W/(m · K)	
Intensidad energética	vatio por estereorradiante	W/sr	
Cantidad de electricidad	culombio	C	(= A ⋅ s)
Tensión eléctrica, diferencia de potencial,	Culomoto		
fuerza electromotriz	voltio	V	(=W/A)
Intensidad de campo eléctrico	voltio por metro	V/m	1-1101
Resistencia eléctrica	ohmio	Ω	(= V/A)
Capacidad eléctrica	faradio	F	$(=A \cdot s/V)$
Flujo de inducción magnética	weber	Wb	(= V · s)
Inductancia	henrio	Н	$(=V \cdot s/A)$
Inducción magnética	tesla	T	$(=Wb/m^2)$
Intensidad de campo magnético	amperio por metro	A/m	
Fuerza magnetomotriz	amperio	A	
Flujo luminoso	lumen	lm	(= cd ⋅ sr)
Luminancia	candela por metro cuadrado	cd/m ²	
Huminancia	lux	1x	$(=lm/m^2)$
Actividad (de un manantial radiactivo)	1 por segundo	s-1	

CONCEPTOS IMPORTANTES

• Factor de conversión de unidades: número de unidades de una magnitud de un sistema de unidades contenidas en una unidad de la misma magnitud de otro sistema de unidades.

• Ecuaciones homogéneas (punto de vista dimensional): todos los términos de la ecuación tienen las mismas dimensiones (unidades coherentes).

- Razones adimensionales: se obtienen si se dividen todos los términos de la ecuación homogénea por uno de sus miembros.
- Ecuaciones dimensionalmente heterogéneas (experimentación)

ANÁLISIS DIMENSIONAL

CONCEPTO DEL ANÁLISIS DIMENSIONAL: instrumento matemático que, conocidas las variables implicadas en un fenómeno, permite agruparlas en un reducido número de razones o números adimensionales.

PRINCIPIOS FUNDAMENTALES DEL ANÁLISIS DIMENSIONAL, según BRIDGMAN:

- 1. Todas las magnitudes físicas pueden expresarse como funciones de un reducido número de magnitudes fundamentales.
- 2. Las ecuaciones que relacionan las magnitudes físicas son homogéneas.
- 3.Si una ecuación es dimensionalmente homogénea, puede reducirse a una relación entre una serie completa de razones o números adimensionales --> TEOREMA π DE BUCKINGHAM

SERIE DE NÚMEROS ADIMENSIONALES COMPLETA: cuando todos los números adimensionales son independientes entre sí: j = n - j

Suponiendo que π 1, π 2, ..., π i constituyen la serie completa de razones adimensionales que pueden formarse con las variables y constantes dimensionales que influyen en cierto fenómeno, et teorema π de Buckingham se expresa: $f(\pi 1, \pi 2, ..., \pi i) = 0$

MÉTODOS DEL ANÁLISIS DIMENSIONAL

- ✓ MÉTODO DE BUCKINGHAM
- ✓ MÉTODO DE RAYLEIGH

Agrupan en razones o números adimensionales un cierto número de variables y constantes dimensionales que se SUPONE influyen en un fenómeno determinado.

✓ MÉTODO DE LAS ECUACIONES DIFERENCIALES

Parte de ecuaciones diferenciales de conservación de la materia, de la cantidad de movimiento, y energía.

MÉTODO DE BUCKINGHAM

- 1. Se establecen las variables que influyen en el fenómeno.
- 2. Se formulan las ecuaciones dimensionales de todas las variables y constantes (en el S.U. elegido).
- 3. Si hay variables con iguales dimensiones, se tiene en cuenta solo UNA para el análisis; añadiendo al final, a los grupos adimensionales que resulten, las RAZONES ADIMENSIONALES a que conduzcan los coeficientes de las restantes variables. *FACTORES DE FORMA: razones adimensionales adicionales (w1, w2,).
- 4. Se forma la matriz de los exponentes a que quedan afectadas las magnitudes fundamentales en las ec. dimensionales de las variables y constantes.
- 5. Se determina la característica "j" de la matriz.
- 6. Formar los "i" grupos adimensionales independientes (i = n j): a cada **producto de j** variables y constantes dimensionales, **elevados a exponentes a determinar**, se añaden como **factores cada una de las n-j variables**

restantes elevadas al exponente unidad

7. Las series de exponentes (a1, b1, c1,...,p1;; ai, bi, ci,...,pi) deben ser tales que los grupos π 1, π 2, π i sean adimensionales --> ecuaciones de

 $\pi 1 = X1^{a1}.X2^{b1}.X3^{c1},...,Xj^{p1}.Xj + 1$ $\pi 2 = X1^{a2}.X2^{b2}.X3^{c2},...,Xj^{p2}.Xj + 2$ $\pi i = X1^{ai}.X2^{bi}.X3^{ci},...,Xj^{pi}.Xj + i$

condición de todas las magnitudes fundamentales en cada razón: **ecuaciones = incógnitas** (exponentes).

1. Formular el Teorema π de Buckingham:

 $f(\pi 1, \pi 2, ..., \pi i) = 0$

MÉTODO DE RAYLEIGH

- 1. Se establecen las variables que influyen en el fenómeno.
- 2. Se expresa una de las variables (la de mayor interés) como función potencial de las demás y constantes dimensionales $X1 = K. X2^{a2}.X3^{a3}... Xn^{an}$
- 3. Sustituir las magnitudes del punto anterior por sus dimensiones.
 - Establecer las ecuaciones de condiciones de homogeneidad para cada una de las unidades fundamentales.
- 4. Si el sistema de ecuaciones elegido tiene p magnitudes fundamentales, las ecuaciones de condición del paso anterior constituyen un sistema de p ecuaciones con (n-1) incógnitas como máximo.
- Se eligen (n 1 p) exponentes o incógnitas y se resuelve el sistema indicado para encontrar el valor de los "p" exponentes restantes en función de los elegidos.
- 5. Los valores de p exponentes del paso anterior se sustituyen en la función y se agrupan las magnitudes elevadas a los mismos exponentes.

Resultará una razón adimensional elevada al exponente unidad y razones adimensionales cada una elevada a uno de los exponentes elegidos. Por lo tanto, se llegará a las razones adimensionales buscadas:

MÉTODO DE LAS ECUACIONES DIFERENCIALES

Éste método parte de las ecuaciones diferenciales de conservación de materia, cantidad de movimiento y energía; y tiene en cuenta las condiciones límites --> Es poco probable que se omitan variables relevantes.

Las ecuaciones de conservación son homogéneas dimensionalmente --> si se dividen todos los términos por uno cualquiera de ellos, resultan tantas razones adimensionales independientes como **términos - 1**.

Se puede apreciar el significado físico de cada una de las razones obtenidas.

TABLA 3.13. Ecuaciones de conservación simplificadas

Corriente de propiedad	Por convección	Por transporte		Por generación III				
Ecuación de conservación	1	molecular II	111,	T	1112	III ₃	1114	
Cantidad de movimiento* [F.T. 3-105)] (12)	$\rho \vec{v} \nabla \cdot \vec{v}$	= μ∇²τ'	- ∇p	+	$\rho \vec{g}$	$-\rho \beta \beta (T-T)$	$-\rho \overline{\xi}_A \vec{g}(\rho_A - \overline{\rho}_A)$	[3.21]
Energia** [F.T. 3-107] (12)	$\rho c_{\rho} \overline{c} \nabla T$	$= k\nabla^2 T$			$\tilde{h}_{AB} t_A$	e Belg	+ μφ,	[3.22]
Componente A [F.T. 3-103] (12)	$v \cdot \nabla \rho_A$	$= \frac{M_B}{M} D_{AB} \nabla^2 \rho_A$		+	r'a			[3.23]

^{*} En esta ecuación, el término III₂ aparece exclusivamente cuando la convección natural es despreciable.

^{**} $\vec{h}_{AB} = \vec{h}_A - \vec{h}_B = \frac{h_A}{M_A} - \frac{h_B}{M_B}$, siendo h_B y h_B las entalpias molares parciales de A y B, respectivamente, y M_A : M_B los respectivos pesos moleculares (12).

Cantidad de movimiento	Energia	Materia
[3.21] 1/H F. inercia	[3.22] I Corr. conv. calor	[3.23] 1/11 Corr. conv. A
F. rozamiento N° de Reynolds $Re = \frac{VL\rho}{\mu}$	Corr. cond. calor N^o de Peclet $Pe = \frac{\rho c_p VL}{k}$	Corr. dif. A N° de Peclet másico $Pe_{AB} = \frac{VL}{D_{AB}}$
[3.21] $\frac{\text{III}_1}{1}$ F. de presión F. de inércia N.º de Euler $Eu = p/\rho V^2$	[3.22] $\frac{1}{1}$ $\frac{1}{1}$ $\frac{Pe}{Re}$ N.* de Prandtl $Pr = \frac{v}{\alpha} = \frac{c_p \mu}{k}$	$[3.23] \frac{1/\Pi}{[3.21]} = \frac{Pe_{AB}}{Re}$ $N.* \text{ de Schmidt}$ $S_C = \frac{v}{D_{AB}} = \frac{\mu}{\rho D_{AB}}$
[3.21] 1 III ₂ F. de inercia	$[3.22] \frac{11I_2}{1}$ Corr. calor r. quim.	[3.23] $\frac{\Pi I_2}{I}$ Corr. A reac. q.
F. de gravedad N.* de Froude $Fr = \frac{V^2}{L \cdot g}$	Corr. conv. calor N.* de Damköhler III $Da_{III} = \frac{\hat{h}_{AB}r_AL}{\rho c_g VT}$	Corr. conv. A N.* de Damköhler I $Da_1 = \frac{r_A \cdot L}{V \rho_A}$
[3,21] 1 III ₃ (F. iner.)(F. conv. térm.)	[3,22] III ₂ TI Corr. calor r. quim.	[3.23] III ₂ Corr. A reac. q.
(F. de rozam.) ² N^+ de Grashof $Gr = \frac{\rho^2 L^2 g \overline{\beta} \Delta T}{\mu^2}$	Corr. cond. calor N^{s} de Damköhler IV $Da_{IV} = \frac{h_{AB}r_{A}L^{2}}{kT} = \frac{Da_{III}}{Pe}$	Corr. dif. A N.* de Damköhler II $Da_{II} = \frac{r_A L^2}{D_{AB}\rho_A} = \frac{Da_I}{Pe_{AB}}$
[3.21] $\frac{1}{\Pi} \frac{\Pi I_4}{\Pi}$ (F. iner.)(F. conv. conc.) (F. de rozam.) ² N.* de Grashof de conc. $Gr_{AB} = \frac{\rho^2 U_3^2 V_4 \Delta \rho_A}{\mu^2}$	[3.22] $\frac{III_A}{II}$ Corr. disip. ener. Corr. cond. calor N.° de Brinkman $Br = \frac{\mu V^2}{kT}$	

Cantidad de movimiento	Energía	Materia
	[3.22] $\frac{1 + II}{II} = \frac{h\Delta T/L}{II}$ Corr. conv. y cond. cal. Corr. cond. calor N." de Nusselt $Nu = \frac{hL}{k}$	$[3.23] \frac{\mathbf{I} + \mathbf{II}}{\mathbf{II}} = \frac{k_A \Delta p_A I L}{\mathbf{II}}$ $\frac{\text{Corr. conv. y dif. } A}{\text{Corr. dif. } A}$ $\mathbf{N}.^{\circ} \text{ de Nusselt másico}$ $Nu_{AB} = \frac{k_A L}{D_{AB}}$
	[3.22] $\frac{1 + II}{I} = \frac{h\Delta T/L}{I}$ Corr. conv. y cond. Corr. conv. calor N.º de Stanton $St = \frac{h}{\rho c_{\rho} V} = \frac{Nu}{\rho e}$	$[3.23] \frac{\mathbf{I} + \mathbf{II}}{\mathbf{I}} = \frac{k_A \Delta \rho_A I}{\mathbf{I}}$ Corr. conv. y dif. A Corr. conv. A N.° de Sherwood $Sh = \frac{k_A}{V} = \frac{Nu_{AB}}{Pe_{AB}}$
[3.21] $\frac{I}{\sigma_a l L^2}$ F. inercia F. tens. superf. N.º de Weber $We = \frac{\rho V^2 L}{\sigma_a}$	[3.22] $\frac{1}{\sigma \varepsilon T^4/L}$ Corr. conv. calor Corr. rad. calor N.° de Thring $Th = \frac{\rho c_p V}{\sigma \varepsilon T^3}$	
	Temp. emisor Temp. receptor Razón de temperaturas $rT = \frac{T_e}{T_r}$	

^{*} Se representa la tensión superficial por σ, a fin de diferenciarla de la constante de la ley de Step Boltzmann σ que figura en el número de Thring.