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Abstract—The rise of drones in the recent years largely
due to the advancements of drone technology which provide
drones the ability to perform many more complex tasks
autonomously with the incorporation of technologies such as
computer vision, object avoidance and artificial intelligence.
However, the misuse of drones such as the Gatwick Airport
drone incident resulted in major disruptions which af-
fected approximately 140,000 passengers. To deter this from
happening in the future, drone surveillance are extremely
crucial. With this, it will be achieved firstly by detection
and followed by tracking of drones. This paper presents
and investigates the use of a deep learning object detector,
YOLOvV3 with pretrained weights and transfer learning to
train YOLOV3 to specifically detect drones. We demonstrated
that the detection results from YOLOv3 after machine
learning had an average accuracy of 88.9% at input image
size of 416 x 416. Finally, we integrated into NVIDIA Jetson
TX2 for real-time drone detection.

Index Terms—YOLOvV3, Machine Learning, Deep Learn-
ing, Drone Detection, Transfer Learning, NVIDIA Jetson
TX2.

I. INTRODUCTION

In the recent years, with the increased of usage and
interests with drones are due to the ability to perform
increasingly complex tasks such as surveillance and of-
fensive operations in the military, emergency response,
agriculture, construction planning, security and safety
of personnel to parcel deliveries. The advancements of
drone technology provide drones the ability to perform
many complex tasks autonomously. This is done by the
incorporation of various technologies such as computer
visions, object avoidance and artificial intelligence. [1]
However, the misuse of drones such as the Gatwick
Airport drone incident which happened between 19 to
21 December 2018 where drone sightings close to the
airport were reported. This resulted in the cancellation
of hundreds of flights, causing major disruptions which
affected approximately 140,000 passengers. [2] These
calls for the ability to detect and track drone more quickly
and effectively without further disruption to the air traffic.

II. YOLOV3 OBJECT DETECTOR

YOLOV3 is a one-stage object detector and stands for
You Only Look Once version 3 is a state-of-the-art open
source real time object detector improved and developed
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by Joseph Redmon from YOLOvI1. YOLOV3 is able to
process images in real time at 30 Frames Per Second
(FPS) with a mean Accurate Precision (mAP) of 57.9% on
coco test-dev when using a graphic processing unit (GPU),
NVIDIA Pascal Titan X. YOLOv3 predicts bounding
boxes using dimension clusters as anchor box and with the
use of dimension clusters along with directly predicting
the bounding box centroid location will improve YOLOv3
accuracy by almost 5%. [11]

A. Network Architecture

YOLOV3 deep network architecture is Darknet-53 that
consists of 106 fully convolutional layers (FCN) which
can be seen in Figure 5. The deep network architecture
originally has 53 layers and in order to perform detection,
another 53 layers will be stacked onto it which results in
a total of 106 layers. [12]

YOLO v3 network Architecture

Fig. 1. Network Architecture of YOLOvV3 [12]

Predictions for YOLOV3 at 3 scales and this is done
by down sampling the input image by 32,16 and lastly
8. The first detection is done at the first scale in the
82nd convolutional layer, second detection is done at
the second scale in the 94th convolutional layer and the
third detection is done at the third scale in the 106th
convolutional layer which can be seen in Fig.1 [12]. The
first detection is done by the 82nd layer of the deep
network architecture where the input image of size 416
x 416 is down sampled by the network with a stride of
32. This will result in a feature map of size 13 x 13 in
the 82nd layer which can be seen in Fig.2. A detection is
done by using a 1 x 1 detection kernel which will result
in a detection feature map of 13 x 13 x 255.

The second detection is done by the 94th layer of the
deep network architecture with an input image size of 416
x 416 that is down sampled by the network with a stride
of 16. This will result in a feature map of size 26 x 26 in
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Fig. 2. Feature Map Size of 13 x 13 in the 82nd Layer [12]

the 94th layer. This will result in a detection feature map
of 26 x 26 x 255 when using a 1 x 1 detection kernel.

The third detection is done by the 106th layer of the
deep network architecture with an input image size of 416
x 416 that will be down sampled by the network with a
stride of 8. By doing so, this will result in a feature map
of size 52 x 52 in the 106th layer. The detection feature
map will then have a size on 52 x 52 x 255 witha 1 x 1
detection kernel.

YOLOvV3 object detector will be used as it is able to
detect small objects fast, accurate and most importantly
in real time. This is due to the detection at 3 different
scales where at scale 1 the 13 x 13 detection feature
map as shown in Fig.2 will be used to detect large size
objects, the 26 x 26 detection feature map at scale 2 will
be used to detect medium size objects and lastly the 52
X 52 detection feature map will be used to detect small
objects. At the 52 x 52 detection feature map, there will
be a total of 2704 cells in an image where each cell is
able to generate 5 bounding boxes. This means that at
the 106th convolutional layer that is used for detection of
small objects, 13520 bounding boxes can be generated in
a single image for predictions and is able to detect small
object which is a necessity for detection of small drones
or for drones which are a distance away.

The selection of YOLOV3 is also due to its fast in-
ference time that does not compromise its accuracy when
compared with various deep learning object detectors such
as SSD, DSSD, R-FCN, FPN and Retinanet which can be
seen in Fig.3. [13] When comparing YOLOv3 with R-
CNN and Faster R-CNN, YOLOV3 performance is 1000
times faster than R-CNN and 100 times faster than Faster
R-CNN. [13] This shows that YOLOv3 has the quickest
inference time of 50 milliseconds with a mAP of 58,
therefore YOLOV3 is the object detector with the best
performance when comparing with the various detectors
as shown in Fig.3.

B. YOLOv3 Detection of Drones

The pre-trained weights in YOLOvV3 of multiple dif-
ferent classes did not include a class to detect drones.
Therefore the machine learning is needed to train this deep
learning object detector to specifically detect drone and
to share the results which is the objective of this research

paper.

W voLovs
-@- RetinaNet-50
¢ RetinaNet-101

Method mAP-50 time
[B] SSD321 454 61
[C) DSSD321 461 85
[D] R-FCN 519 85
[E] SSD513 504 125
[F] DSSD513 533 156
[G] FPN FRCN 59.1 172

RetinaNet-50-500 509 73
RetinaNet-101-500 53.1 90
RetinaNet-101-800 57.5 198

YOLOv3-320 515 22
48 YOLOv3-416 553 29
YOLOv3-608 579 51
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Fig. 3. Comparison of YOLOv3 with various object detectors [13]

C. Dataset Collection

Images of drones, hexacopters, quadcopters and un-
manned aerial vehicles (UAV) have been collected. To
further enhance the dataset, several experiments were done
to collect drone images using camera and 360 camera
at during different timings in the day to simulate sunny
and cloudy. Drones images were also captured at different
altitudes from 10m to 50m with an increment of 10m as
we require to capture small drones. A total of 1500 images
drone images were manually sorted to remove irrelevant
images and 1435 images were prepared. This is to ensure
the precision of dataset that was prepared.

D. Image Annotation and Image Augmentation

Image annotation aims to assign a single class label
to the object that is contained in the image. [14] As the
objective is to detect drones, only 1 class will be set.
Image annotations were done for every image in the drone
datasets which consists of 1435 images by using image
labelling tools. The choice of bounding boxes will be
rectangle boxes as YOLOV3 prediction bounding boxes
are rectangle.

Data augmentation is a technique that is widely used in
machine learning tasks such as classification of images.
Data Augmentation was used to further enhance the size
of the training dataset and avoids overfitting by creating
new samples of the original dataset. [15]

Data augmentation was done to the original image
by vertically flip the image, horizontally flip the image,
adding noise to the image and rotating the image which
can be seen in. The original dataset of 1435 images have
been enhanced to 7175 images after data augmentation.

III. TRAINING AND VALIDATION OF DATASET

The selection of training and validation parameters of
a model is an essential step in machine learning to ensure
optimal performance without overfitting. This is done by
dividing the dataset into 2 sets: training and validation.
[16]

The selection of training and validation parameters were
done and the probability is set to 0.8. A probability of 0.8
means that 80% of the images will be tagged for training
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and the remaining 20% of the images will be tagged for
validation. The reason for choosing a probability of 0.8 is
due to Pareto principal which is known as the 80/20 rule
which states that roughly 80% of the effects will come
from 20% of the causes. [17]

The dataset of 7175 images were divided into training
and validation where 19.5% of the dataset is tagged
as validation and 80.5% of the remaining is tagged as
training.

IV. TRAINING OF CUSTOM DATASET WITH NEURAL
NETWORK YOLOV3

The training of neural network YOLOvV3 with custom
dataset to specifically detect drones will be done by
deployment on Amazon EC2. The following hyperparam-
eters such as learning rate, epoch, batch size, input size
and the type of weights initiation that will used in to
configuration to train the deep learning neural network
YOLOV3 will be discussed below. Deep learning neural
network are trained using stochastic gradient descent
algorithm and stochastic gradient descent is an algorithm
that performs backpropagation. [18] Learning rate is a
configurable hyperparameter that is used in the training of
deep learning neural network. The learning rate controls
the speed or the rate where the model learns, and it has
a small positive value that ranges from 0 to 1.0. A large
learning rate allows model to learn faster which decreases
the training time, but this will result in an increase in
average loss. A small learning rate will result in the model
learning slowly which increases the training time and it
may result in the training to be permanently stuck with
a high training error. [19] Therefore, an optimal learning
rate should be used where the learning rate is not too
large or too small. The learning rate that will be used for
training of custom dataset with neural network YOLOv3
will be 0.0001. Epoch is a configurable hyperparameter
where 1 epoch means an entire dataset passing forward
and backward through the neural network once. Passing
an entire dataset forward and backward through the neural
network once is insufficient as it would lead to overfitting
and if the number of epochs is too large, this will result
in underfitting. An optimal epoch has to be used to
prevent overfitting and underfitting. The epoch that will
be used for training of custom dataset with neural network
YOLOvV3 will be 50 where 1 epoch would mean that 7175
images in the dataset will be passed forward and backward
through the neural network. It is impossible to feed a
dataset of images to a neural network as it is too huge.
Batch size are then introduced which divides the dataset
equally into many batches. This will allow the feeding
of smaller datasets in batches to the neural network. The
batch size that is used for training will depend on the
GPU memory, a GPU with a higher memory will allow
a larger batch size to be used for training. The batch size
that will be used for training of custom dataset with neural
network YOLOv3 will be 12. With a dataset of 7175
images, this means that it would take 598 iterations to
complete one epoch and 29900 iterations for 50 epochs.

The types of weights initiation that will be used for
training will be transfer learning from YOLOv3 COCO
model. Transfer learning is the improvement of learning
in a new task by transferring the existing knowledge that
had been already learned. [20] This is done by training
the last few layers of the convolutional neural network in
YOLOVS3 to specifically detect drones.

V. TRAINING AND DETECTION RESULTS

A. Training Results

Training results after machine learning for YOLOV3 to
specifically detect drones must be analysed. This can be
seen in Figure 8 which shows the epoch vs loss from 1
to 50 epochs during training.

Fig. 4. Overall Training Results for 0-50 epochs

The objective will be to export YOLOV3 custom trained
weights from the epoch with the least amount of losses to
ensure the accuracy of the detection results. An epoch
is considered as a checkpoint and the checkpoint that
was exported as YOLOV3 custom trained weights will be
checkpoint 33 that can be seen in Fig.5 which shows the
least amount of loss of 0.009536. Checkpoint 33 has the
least amount of losses after analysing and comparing with
all 50 different checkpoints.

»| 0.009536

% Epoch

Fig. 5. Checkpoint 33 which has the least loss of 0.009536

B. YOLOv3 Custom Drone Detection Results

YOLOV3 custom trained weights to specifically detect
drones after machine learning were sucessfully deployed
in YOLOV3 to perform detections on an image and a video
showing drones which can be seen in Fig.6 and Fig.7

The custom trained weights were also successfully
deployed in real time with a webcam and in real time
with an external spherical camera (Ricoh Theta S) which
can be seen in Fig.8 and Fig.9 .
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1) Results of YOLOv3 Drone Detection on Cloudy
Environment and various Altitudes: YOLOv3 with custom
trained weights was successful in detecting drones on the
images that was taken during the simulation of different
altitude and cloudy conditions which can be seen in Figs.
10,11,12,13. The accuracy results and the coordinates
of the detected drones can be seen in Figs.14,15,16,17
respectively.

Fig. 6. Detection of drone in an image

Fig. 10. Detection of drone at 10m height in a cloudy environment

Fig. 7. Detection of drone in a video

Fig. 11. Detection of drone at 20m height in a cloudy environment

Fig. 8. Detection of drone with machine webcam in real time

Fig. 12. Detection of drone at 30m height in a cloudy environment

Fig. 9. Detection of drone with an external spherical camera Ricoh . 2) Results of YQLOV3 Prone Detection on .Sunny En-
Theta S in real time vironment and various Altitudes: YOLOvV3 with custom
trained weights was successful in detecting drones on the
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Fig. 13. Detection of drone at 40m height in a cloudy environment

Fig. 14. Accuracy and coordinates of detected drone at 10m height in
a cloudy environment

Fig. 15. Accuracy and coordinates of detected drone at 20m height in
a cloudy environment

Fig. 16. Accuracy and coordinates of detected drone at 30m height in
a cloudy environment

Fig. 17. Accuracy and coordinates of detected drone at 40m height in
a cloudy environment

Fig. 18. Detection of drone at 10m height in a sunny environment

Fig. 19. Detection of drone at 20m height in a sunny environment

images that was taken during in a sunny condition which
can be seen in Figs. 18,19,20,21. The accuracy and the
coordinates of the detected drones can be seen in Figs.
22,23,24,25.

YOLOv3 with trained weights to specifically detect
drones were subsequently deployed on NVIDIA Jetson
TX2 and proven successful. However, there was lim-
itation due to the lower processing capability of the
Jetson TX2 which resulted in a very low fps even after
overclocking the Jetson TX2 module. The demonstra-
tions can be seen in these 2 Youtube links (consecutive
clips): hitps : //youtu.be/ylal AildqDw and hitps
//youtu.be/vsPTNoUKG61I .

VI. CONCLUSION

This paper presents the implementation of an object
detector to detect drones. With transfer learning to train

Fig. 20. Detection of drone at 30m height in a sunny environment
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Fig. 21. Detection of drone at 40m height in a sunny environment (2]

%
X i olotz o [3]

[4]
(5]

(6]
Fig. 22. Accuracy and coordinates of detected drone at 10m height in
a sunny environment [7]

the deep learning detector to specifically detect drones, 8]

the modified YOLOv3 was able to successfully detect
large, medium and small drones. The results from using  [9]
YOLOV3 custom detector shows that it is able to accu-
rately detect drones at a confidence level between 60% to  [10]
100% and with an average confidence level of 88.9% with
a dataset of 7175 images.
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