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a b s t r a c t

In most agricultural systems, one of the major concerns is to reduce the growth of weeds. In most cases,
removal of the weed population in agricultural fields involves the application of chemical herbicides,
which has had successes in increasing both crop productivity and quality. However, concerns regarding
the environmental and economic impacts of excessive herbicide applications have prompted increasing
interests in seeking alternative weed control approaches. An automated machine vision system that can
distinguish crops and weeds in digital images can be a potentially cost-effective alternative to reduce the
excessive use of herbicides. In other words, instead of applying herbicides uniformly on the field, a real-
time system can be used by identifying and spraying only the weeds. This paper investigates the use of
a machine-learning algorithm called support vector machine (SVM) for the effective classification of crops
and weeds in digital images. Our objective is to evaluate if a satisfactory classification rate can be
obtained when SVM is used as the classification model in an automated weed control system. In our
experiments, a total of fourteen features that characterize crops and weeds in images were tested to find
the optimal combination of features that provides the highest classification rate. Analysis of the results
reveals that SVM achieves above 97% accuracy over a set of 224 test images. Importantly, there is no
misclassification of crops as weeds and vice versa.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Increasing productivity and upgrading plantation systems are
the major concerns for accelerating agricultural development.
Weeds are unwanted pests that can survive and reproduce in
agricultural fields. They hinder agricultural development by dis-
turbing production and quality through competing with crops for
water, light, soil nutrients, and space. Uncontrolled weeds
commonly reduce crop yields from 10 to 95 percent (Young et al.,
1978). As a result, weed control strategies are critical to sustain
crop productivity. At present, several strategies exist that include
removing weeds manually by human labourers, mechanical culti-
vation, or applying herbicides. Among these, applying herbicides is
the most common method which has adverse impacts on both
environment and human health. It also raises a number of
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economic concerns. In the United States, the total cost of applying
herbicides was estimated to be $16 billion in 2005 (Naeem et al.,
2007). In most cases, herbicides are applied uniformly on a crop
field, which is a cost ineffective approach. The reason is that, in
reality, weeds are aggregated (Rew and Cussans, 1995) and usually
grow in clumps or patches (Tian et al., 1999) within the cultivated
field. There could be many parts of the field that have none or
insignificant volume of weeds, but herbicides are also applied in
those parts. On the other hand, applying herbicides by human
labourers using back-pack sprayer is very time consuming and
costly, which is a commonpractice in many third world countries. If
the same types of herbicides are applied in a field repeatedly for the
removal of the weeds population, there is often a chance of emer-
gence of weeds that have become tolerant to those types of
herbicides. According to International Survey of Herbicide Resistant
Weeds (International Survey of Herbicide Resistant Weeds, 2010),
346 herbicide resistant biotypes that belonged to 194 species
(114 dicots and 80 monocots) are spread over 340,000 fields
worldwide.

The performance of the agricultural sector has an over-
whelming impact on food security, poverty alleviation and
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Table 1
Selected species.

English name Latin name

Chilli Capsicum frutescens L.
Pigweed Amaranthus viridis L.
Marsh herb Enhydra fluctuans Lour.
Lamb’s quarters Chenopodium album L.
Cogongrass Imperata cylindrica (L.) P. Beauv.
Bur cucumber Sicyos angulatus L.
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economic development of a country (Irz et al., 2001). In order to
reduce the pressures on the agricultural sector, crops production
and quality must be increased with diminishing cost for weeds
control. It is here where a machine vision system that has the
ability to distinguish crops from weeds so that herbicides can be
applied effectively can potentially enhance the profitability and
lessen environmental degradation. In this approach, images are
taken by an automated system from different parts of a crop field
so that weeds can be identified and sprayed accordingly. Two
such approaches have been proposed for automated weeds
detection in agricultural fields (Thompson et al., 1990). The first
approach classifies crops and weeds based on their geometric
differences such as leaf shape or plant structure, while the
second approach uses spectral reflectance characteristics (Pérez
et al., 2000).

In addition, many researchers have investigated other
approaches for the automation of the weeds control process.
Shearer and Jones (1991) developed a photo sensor based plant
detection system which has the ability of detecting and spraying
only the green plants. Shape feature analyses were performed by
Woebbecke et al. (1995) on binary images to differentiate between
monocots and dicots. Colour, shape and texture analyses have been
investigated by Zhang and Chaisattapagon (1995) for the classifi-
cation of weeds and wheat crop. Manh et al. (2001) proposed a new
method for weed leaf segmentation based on the use of deformable
templates. Later, Søgaard (2005) introduced an image processing
method of weeds classification based on active shape models,
which was able to identify young weed seedlings with an accuracy
that ranged from 65% to above 90%. Naeem et al. (2007) classified
narrow and broad leaves by measuring Weed Coverage Rate (WCR)
in a system that used a personal digital assistant (PDA) as the
processing device. Ahmad et al. (2007) developed an algorithm to
categorize images into narrow and broad classes based on the
Histogram Maxima using a thresholding technique for selective
herbicide application, which achieved an accuracy of up to 95%.
Ghazali et al. (2008) obtained above 80% accuracy by using
a combination of statistical grey-level co-occurrence matrix
(GLCM), structural approach Fast Fourier Transform (FFT), and
scale-invariant feature transform (SIFT) features in a real-time
weeds control system for an oil palm plantation.

In the last few years, support vectormachine has attractedmuch
attention for crop and weed classification. Karimi et al. (2006) used
SVM to detect weed and nitrogen stress from hyperspectral images
taken over a corn field. Later, Ishak et al. (2008) presented a SVM-
based narrow and broadleaf weed detection method that employs
Gabor and FFT-based texture features. Wu andWen (2009) utilized
GLCM and histogram statistics-based texture features for weed and
corn seedling recognition with SVM classifier. A shape and texture
based weed classification method was presented by Zhu and Zhu
(2009). More recently, Tellaeche et al. (2011) have introduced
a combination of segmentation and SVM-based decision-making
approach for weed classification. A sequential SVM-based small-
grain weed species discrimination method has been introduced by
Rumpf et al. (2012).

The objective of our paper is to present a new model for clas-
sifying crops and weeds in digital images using support vector
machine and to evaluate its performance in an automated weeds
control system. The proposed model employs a combination of size
and rotation invariant shape, colour, and moment features to form
the feature vector. In addition, different feature selection
approaches are exploited, which results in a high accuracy in crop
and weeds classification. SVM has been chosen as classifier because
of its impressive generalization performance, the absence of local
minima, and the sparse representation of its solution (Kurzynski
et al., 2007).
2. Materials and methods

2.1. Image acquisition

The images used in this study were taken from a chilli (Capsicum
frutescens L.) field. In addition, fiveweed species were included that
are commonly found in the chilli fields of Bangladesh. The weed
samples were selected from different areas of the field. During
image acquisition, all the weed plants were in mature stage. Table 1
lists both the English and the Latin names of chilli and the selected
weed species.

The images were taken with an OLYMPUS FE4000 point-and-
shoot digital camera. The camera is equipped with
a 4.65e18.6mm lens thatwas pointed towards the ground vertically
while taking the images. To ensure a fixed camera height from the
ground, the camera was mounted on top of a tri-pod. The lens of
the camerawas 40 cmabove the ground level. An imagewould cover
a 30 cmby30 cmgroundarea using these settings. Each image scene
contained a single plant without mutual overlapping with other
plant leaves. No flash was used while taking the picture and the
image scenes were protected against direct sunlight. The image
resolution of the camera was set to 1200 � 768 pixels. The images
taken were all colour images. Fig. 1 shows the sample images of
a chilli (C. frutescens L.) and the other five weed species.
2.2. Pre-processing

Image segmentation was performed on these images to
separate the plants from the soil. A binarization technique based
on global thresholding was used for this purpose. The fact that
plants look greener than soil was used to guide the segmentation.
Let ‘G’ denote the green colour component of an RGB image. A
grey-scale image was obtained from the original image by
considering only the ‘G’ value. A threshold value for ‘G’ was then
calculated. Let ‘T’ denote this threshold value. Those pixels with
a ‘G’ value greater than ‘T’ were considered as plant pixels while
the pixels with a ‘G’ value smaller than ‘T’ were considered as soil
pixels. From each image, a binary version was obtained, where
the pixels with a value ‘0’ represent soil and pixels with a value ‘1’
represent plant.

Next, to remove noises from these images, morphological
opening was first applied to the binary images. In morphological
opening, an erosion operation is carried out after a dilation oper-
ation has been performed on the image. It has the effect of
smoothing the contour of objects by breaking narrow isthmuses
and eliminating thin protrusions from an image (Gonzalez and
Woods, 2004). Then, morphological closing was applied. In
morphological closing, a dilation operation is performed after an
erosion operation has been applied to the image. It has the effect of
eliminating small holes while filling the gaps inside the contour of
an image (Gonzalez and Woods, 2004). Thus, a single blob repre-
senting the whole plant was obtained for all the images. Fig. 2
shows the result of applying these pre-processing steps on
a sample image of Amaranthus viridis L.



Fig. 1. Sample images of different plants; (a) Capsicum frutescens L. (b) Amaranthus viridis L. (c) Enhydra fluctuans Lour. (d) Chenopodium album L. (e) Imperata cylindrica (L.) P. Beauv.
(f) Sicyos angulatus L.
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2.3. Feature extraction

A total of fourteen features were extracted from each image.
These features were divided into three categories: colour features,
size independent shape features, and moment invariants.

2.3.1. Colour features
Let ‘R’, ‘G’ and ‘B’ denote the red, green and blue colour

components of an RGB image, respectively. Every colour compo-
nent was divided by the sum of all the three colour components. It
has the effect of making the colour features consistent with
different lighting levels.

r ¼ R
Rþ Gþ B

(1)

g ¼ G
Rþ Gþ B

(2)

b ¼ B
Rþ Gþ B

(3)

Here, ‘r’, ‘g’ and ‘b’ are the processed colour components which
are independent to different light levels. While calculating the
colour features, all the plant image pixels were considered within
the pre-processed images. So, the colour features are based on only
the plant colour but not the soil (background) colour. The colour
features used were: mean value of ‘r’, mean value of ‘g’, mean value
of ‘b’, standard deviation of ‘r’, standard deviation of ‘g’, and the
standard deviation of ‘b’.
Fig. 2. Images of an A. viridis L.; (a) RGB image (b)
2.3.2. Size independent shape features
Size independent shape features are useful descriptors as they

are dimensionless and independent of plant size, image rotation,
and plant location within most images (Woebbecke et al., 1995).
Four size independent shape features were selected for this
study: form factor, elongatedness, convexity and solidity. For
a circle, the value of form factor is ‘1’ while for all other shapes it
is less than ‘1’. Similarly, long narrow objects have a high elon-
gation value than short wide objects. For an object that is fairly
convex, the value of convexity will be close to ‘1’. This value
decreases as the shape of an object becomes more straggly. On
the other hand, solidity is a measure which specifies the
proportion of the pixels in the convex hull that are also in the
object region.

These shape features can be calculated as follows:

Form factor ¼ 4p
area

perimeter2
(4)

Elongatedness ¼ area
thickness2

(5)

Convexity ¼ convex perimeter
perimeter

(6)

Solidity ¼ area
convex area

(7)

Here, area is defined as the number of pixels with a value ‘1’ in
the binary image. Perimeter is defined as the number of pixels with
a value ‘1’ for which at least one of the eight neighbouring pixels
grey-scale image (c) segmented binary image.
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has the value ‘0’, implying that perimeter is the number of border
pixels. Thickness is twice the number of shrinking steps needed to
make an object disappear within an image. The process is defined
as the elimination of border pixels by one layer per shrinking step
(Guyer et al., 1986). Convex area is defined as the area of the
smallest convex hull that covers all the plant pixels in an image.
Convex perimeter is the perimeter of the convex hull that contains
all the plant pixels in an image.

2.3.3. Moment invariant features
Moment invariants refer to certain functions of moments that

are invariant to geometric transformations such as translation,
scaling, and rotation (Jain, 1986). Only central moments are
considered in our study.

Let, f(x, y) denote a binary image of a plant. Then, f(x, y) is ‘1’ for
those (x, y) that correspond to plant pixels and ‘0’ for those that
correspond to soil pixels. Under a translation of co-ordinates,
x0 ¼ xþ a, y0 ¼ yþ b, invariants of the (p þ q)th order central
moments are defined as:

mp;q ¼
X
x

X
y
ðx� xÞpðy� yÞqf ðx; yÞ; p; q ¼ 0;1;2.. (8)

Here, ‘x ’ and ‘y ’ are the co-ordinates of the region’s center of
gravity (i.e., the centroid). Normalized moments (Jain, 1986), which
are invariant under a scale change x0 ¼ ax and y0 ¼ ay, can be
defined as:

hp;q ¼ mp;q�
m0;0

�g (9)

where

g ¼ pþ qþ 2
2

(10)

These normalized moments are invariant to size change. The
moment invariants selected for this study are listed below:

f1 ¼ h2;0 þ h0;2 (11)

f2 ¼ �
h2;0 þ h0;2

�2þ4h21;1 (12)

f3 ¼ �
h3;0 � 3h1;2

�2þ�
h0;3 � 3h2;1

�2 (13)

f4 ¼ �
h3;0 þ h1;2

�2þ�
h0;3 þ h2;1

�2 (14)

Here, ‘f1’ and ‘f2’ are second-order moment invariants and ‘f3’

and ‘f4 ’ are third-order moment invariants. These are also known
as Hu moments (Hu, 1962). These moment features are invariant to
rotation and reflection, which were calculated on the object area.
The natural logarithm was subsequently applied to make the value
of the moment invariants linear.
Table 2
Classification results using all features.

Latin name of samples Number of
samples

Number of misclassified
samples

Success
rate

Capsicum frutescens L. 40 0 100%
Amaranthus viridis L. 40 5 87.5%
Enhydra fluctuans Lour. 31 2 93.5%
Chenopodium album L. 33 0 100%
Imperata cylindrica (L.) P.

Beauv.
45 0 100%

Sicyos angulatus L. 35 2 94.3%
Average Success Rate 95.9%
2.4. Classification using support vector machine

SVM (Burges, 1998; Cortes and Vapnik, 1995) is a machine
learning approach based on modern statistical learning theory
(Vapnik, 1998). The principle of structural risk minimization is
the origin of SVM learning (El-Naqa et al., 2002). The objective of
SVM is to construct a hyper-plane in such a way that the
separating margin between positive and negative examples is
optimal (Harikumar et al., 2009). This separating hyper-plane
works as the decision surface. As SVM provides binary decisions,
multi-class classification can be achieved by adopting the one-
against-rest or several two-class problems approach. In our
study, we used the one-against-rest approach, where a binary
classifier is trained for each class to discriminate one sample
from all the others, and the class with the largest output is
selected as the result. Even with training examples of a very high
dimension, SVM is able to achieve high generalization. When
used together, kernel functions enable SVM to handle different
combinations of more than one feature in non-linear feature
spaces (Kudo and Matsumoto, 2001).

A classification task in SVM or any other classifier requires first
separating the dataset into two different parts. One is used for
training and the other for testing. Each instance in the training set
contains a class label and the corresponding image features. Based
on the training data, SVM generates a classification model which is
then used to predict the class labels of the test data when only the
feature values are provided. Each instance is represented by an n-
dimensional feature vector,

X ¼ ðx1; x2;. .Þ where n ¼ 14 (15)

Here, ‘X’ depicts n measurements made on an instance of n
features. In our study, there are six classes, namely C. frutescens L., A.
viridis L., Enhydra fluctuans Lour., Chenopodium album L., Imperata
cylindrica (L.) P. Beauv., and Sicyos angulatus L.

In the case of SVM, it is necessary to represent all the data
instances as a vector of real numbers. As the feature values for
the dataset can have ranges that vary in scale, the dataset is
normalized before use. This is to avoid features having greater
numeric ranges dominate features having smaller numeric
ranges. The LIBSVM 2.91 (LIBSVM e A Library for Support Vector
Machines) library was used to implement the support vector
classification. Each feature value of the dataset was scaled to the
range of [0, 1]. The RBF (Radial-Basis Function) kernel was used
for both SVM training and testing which mapped samples non-
linearly onto a higher dimensional space. As a result, this kernel
is able to handle cases where non-linear relationship exists
between class labels and features. A commonly used radial-basis
function is:

K
�
xi; xj

� ¼ exp
�
� g

��xi � xj
��2�; g>0 (16)

where

��xi � xj
��2 ¼ �

xi � xj
�t�xi � xj

�
(17)

Here, ‘xi’ and ‘xj’ are n-dimensional feature vectors. Imple-
mentation of the RBF kernel in LIBSVM 2.91 requires two param-
eters: ‘g’ and a penalization parameter, ‘C’ (LIBSVM � A Library for
Support Vector Machines). Appropriate values of ‘C’ and ‘g’ should
be specified to achieve a high accuracy rate in classification. A grid
search can be carried out for selecting appropriate parameter



Table 3
Confusion matrix of classification using all features. Rows represent true class and
columns represent classification.

1 2 3 4 5 6

1 Capsicum frutescens L. 40 0 0 0 0 0
2 Amaranthus viridis L. 0 35 0 0 0 5
3 Enhydra fluctuans Lour. 0 0 29 2 0 0
4 Chenopodium album L. 0 0 0 33 0 0
5 Imperata cylindrica (L.) P. Beauv. 0 0 0 0 45 0
6 Sicyos angulatus L. 0 2 0 0 0 33
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values, as suggested in (Hsu and Lin, 2002). After repeated exper-
iments, C ¼ 1.00 and g ¼ 1/n were chosen.
2.5. Optimal feature selection

To select the set of features that gives the optimal classification
result, forward-selection and backward-elimination methods were
attempted. In forward-selection, the selection process starts with
a set having only one feature. The rest of the features are then
added to the set one at a time. In each step, every feature that is not
a current member of the set is tested if it can improve the classi-
fication result of the set or not. If no further improvement is
detected, forward-selection is stopped; otherwise, it continues to
find a better classification rate. In backward-elimination, the
selection process starts with a set that includes all the features. The
feature that has the least discriminating ability is then chosen and
removed from the set. This process continues until an optimal
classification result is obtained. These two methods can also be
combined in a stepwise feature selection procedure to discover the
optimal features combination. In stepwise feature selection,
features are added to the set one at a time just like forward-
selection. Next, backward-elimination is applied on the set
obtained from the first step.
3. Results and discussion

To evaluate the proposedmethod, the full dataset can be divided
into two subsets: the training dataset and test dataset. The training
set is used to train the SVM classifier while the test set is used to
predict the accuracy of the classifier. Cross validation is an
Fig. 3. Images of misclassified plants using the best feature set, (a) images of A. viridis L. m
improved testing procedure that prevents the over-fitting problem.
Ten-fold cross validation was applied in testing. In a ten-fold cross
validation, it is required to split the whole training set into ten
subsets, each having an equal number of instances. Subsequently,
one subset is tested using the classifier trained on the remaining
nine subsets. The cross validation accuracy is the average
percentage of correctly classified test data when each subset of the
full dataset has been used in testing.

The cross validation accuracy of the proposed method that used
all 14 features was 95.9% over the set of 224 images. All the crop
images were classified correctly by SVM. However, for the weed
images, there were some misclassifications. Five images of A. viridis
L. were misclassified as S. angulatus L., two images of S. angulatus L.
were misclassified as A. viridis L., and two images of E. fluctuans
Lour. were misclassified as C. album L. No weed image was mis-
classified as C. frutescens L. (the crop). The overall classification
result and the confusion matrix are shown in Table 2 and Table 3,
respectively.

To reduce the feature dimension and find the best feature set,
both forward-selection and backward-eliminationwere attempted.
Using forward selection, a set of eight features was obtained that
achieves a classification rate of 96.4%. These eight features are:
Convexity, Solidity, Elongatedness, Mean value of ‘r’, Mean value of
‘b’, Standard deviation of ‘b’, ln(F1) of area, and ln(F2) of area. On
the other hand, using backward-elimination approach resulted in
a set of nine features that achieves a classification rate of 96.9%.
These nine features are: Solidity, Mean value of ‘r’, Mean value of ‘b’,
Standard deviation of ‘r’, Standard deviation of ‘b’, ln(F1) of area,
ln(F2) of area, ln(F3) of area, and ln(F4) of area. It can be observed
that, features selected using both forward selection and backward-
elimination increased the overall classification rate. However, the
best feature combination was found using stepwise feature selec-
tion. Using this approach, a set of nine features was obtained from
the fourteen features, which achieves the highest classification rate.
These nine features are:

� Solidity
� Elongatedness
� Mean value of ‘r’
� Mean value of ‘b’
� Standard deviation of ‘r’
� Standard deviation of ‘b’
isclassified as S. angulatus L., (b) images of S. angulatus L. misclassified as A. viridis L.



Table 6
Confusion matrix of classification using the best feature set. Rows represent true
class and columns represent classification.

1 2 3 4 5 6

1 Capsicum frutescens L. 40 0 0 0 0 0
2 Amaranthus viridis L. 0 36 0 0 0 4
3 Enhydra fluctuans Lour. 0 0 31 0 0 0
4 Chenopodium album L. 0 0 0 33 0 0
5 Imperata cylindrica (L.) P. Beauv. 0 0 0 0 45 0
6 Sicyos angulatus L. 0 2 0 0 0 33

Table 7
Comparison of the success rates of different SVM-based models for crop and weeds
classification.

Method Number of
samples

Number of
misclassified
samples

Success
rate

Proposed model with the best
feature set

224 6 97.3%

Zhu and Zhu (2009) weed
classification model

224 35 84.4%

Wu and Wen (2009) weed
classification model

224 10 95.5%

Table 4
Comparison of the classification rates using different feature selection methods.

Method Number of
samples

Number of misclassified
samples

Classification
rate

Forward selection 224 8 96.4%
Backward-

elimination
224 7 96.9%

Stepwise feature
selection

224 6 97.3%
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� ln(F1) of area
� ln(F2) of area
� ln(F4) of area

The accuracy of ten-fold cross validation using these nine
features was 97.3%. The misclassified plant images are shown in
Fig. 3. Here, only four images of A. viridis L. were misclassified as S.
angulatus L. and two images of S. angulatus L. were misclassified as
A. viridis L. All other images were classified correctly. Table 4 shows
the comparison of the classification rates obtained using different
feature selection approaches. The overall classification result using
the best feature set and the corresponding confusion matrix are
shown in Tables 5 and 6, respectively.

It is difficult to compare the results of this study with the
other existing methods due to the highly different boundary
conditions in each of the studies. Here, we selected two existing
SVM-based weed classification model for performance compar-
ison. One of the models was presented by Zhu and Zhu (2009),
where a set of shape and texture features were employed to form
the feature vector. The other one is the classification model
presented by Wu and Wen (2009), where GLCM and statistical
properties of the histogram of grey-level images were used to
calculate different texture features. Table 7 shows the perfor-
mance comparison of the proposed method against these two
existing models. It can be observed that, the proposed method
achieves the highest classification rate of 97.3% with only 6
misclassifications using the best feature set. The superiority of
the proposed model is due to the integration of size and rotation
invariant shape features with colour-based plant features and the
use of optimal feature selection techniques in order to find the
best feature set.

Computation time is an important issue for assessing the
performance of any real-time system. The model presented in this
paper was implemented in a computer with a Core 2 Duo 2.20 GHz
CPU. Using this setup, the average calculation time of all the
features from a 448 � 336 pixels image was 0.72s, which is plau-
sible for real-time decision-making. This computation time can be
further reduced by using lower resolution images in the feature
extraction process.

This research was intended to study the feasibility of using SVM
with a combination of different types of features for crop and weed
Table 5
Classification result using the best feature set.

Latin name of samples Number of
samples

Number of misclassified
samples

Success
rate

Capsicum frutescens L. 40 0 100%
Amaranthus viridis L. 40 4 90%
Enhydra fluctuans Lour. 31 0 100%
Chenopodium album L. 33 0 100%
Imperata cylindrica (L.) P.

Beauv.
45 0 100%

Sicyos angulatus L. 35 2 94.3%
Average Success Rate 97.3%
classification. The experimental results indicate that, the proposed
feature set has potential for effective feature vector representation
of crop and weed images for the classification task. The study was
conducted on field images in order to assess the performance of the
proposed model in natural condition. In addition, lowering the cost
of sensing equipments is an important issue for practical agricul-
tural applications. Therefore, in our study, a low-cost camera was
used for image acquisition. However, larger number of images is
required to construct a more robust SVM-based classification
model as it will be easier for SVM then to find the support vectors in
order to construct the separating hyper-planes. Although the
proposed method is able to segment plants from soil background,
there existed segmentation errors in the form of plant holes and
noise backgrounds. Therefore, more effective and efficient image
enhancement techniques should be introduced prior to feature
extraction in the real-time systems.
4. Conclusion

The ability of locating and classifying crops and weeds in digital
images could lead to the development of autonomous vision-guided
agricultural equipments for site-specific herbicide application. It
could also be integrated with equipments for collecting weed
distribution data in order to generate weed maps for precision
spraying, where differentweed species that are sensitive to the same
herbicides are grouped together in the map and the corresponding
application rate is defined based on some economic threshold. In this
paper, we have proposed a classification model based on support
vector machine (SVM) and verified its ability to classify crop and
weeds in digital images effectively in order to reduce the excessive
use of herbicides in agricultural systems. For our experiments, a total
of fourteen features which characterize crops and weeds in images
were evaluated to determine the optimal combination that provides
thehighest classification rate. Analysis of the results reveals that SVM
achieves above 97% accuracy over a set of 224 test images using ten-
fold cross validation. Importantly, there is no misclassification of
crops as weeds and vice versa. To enable further increase in
the classification rate, our future task will involve making the image
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pre-processing steps more robust to noises that will inevitably be
introduced by the operating environment.
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