BIOCHEMICAL REACTORS MUt

M8.1

After studying this module, the student should be able to

» Develop the dynamic modeling equations for a two-state biochemical reactor

» Understand the concept of “washout”

« Understand the different types of steady-state and dynamic behavior exhibited by
the Monod and Substrate Inhibition models

« Find the number of steady-state sohstions and to determine the stability of each
steady-stale

The major sections of this module are:

MS8.1  Background

M8.2 Modeling Equations

M&.3  Steady-state Solution

ME.4  Dynamic Behavior

MRE.5  Linearization

MSB.6  Phase-plane Analysis

MR.7  Understanding Multipie Steady-states
M8.8  Bifurcation Behavior

BACKGROUND

Biochemical reactors are used to produce a large number of intermediate and final prod-
ucts, including pharmaceuticals, food, and beverages. Biochemical reactor models are
simifar to chemical reactor models, since the same type of material balances are per-
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formed. In the simplest reactor we consider two components: hiomass and substrate. The
biomass consists of cells that consume the substrate. Oue example would be a wastewater
treatment system, where the biomass is used to “cat’” waste chemicals (substraie). Another
example is fermentation, where cells consame sugar and produce alcohol.

Consider the schematic of a biochemical reactor shown in Figure M&. 1

In this module we assume that the reactor is perfectly mixed and that the volume is
constant. We use the following notation:
_ , mass of cells
- volume
) mass of substrate
x;} — SUI)SYI‘HI{'} conceniralion T

volume
. _ , mass of cells generated
o= iate ot cell gc-nc[-a“on s e D BT
volume-time

mass of substrate consumed

rate of subsirate consumption = - RO
, volume- lime

i

F = volumetric flowralc = volume/time

Now we can writc the material balances to describe the behavior of this system.

MODELING EQUATIONS

The dynamic model is developed by writing material balances on the biomass (cells) and
the substrate (feed source for the cells). Biomass grows by [eeding on the substrate,

8.2.1 Biomass Material Balance

We write the biomass material balance as:
rate of accumudation = in by flow — out by flow + generation
dVx,

e Py (MS. 1)
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where x, is the concentration of biomass in the feed stream and £ is the volumetrie
tlowrate.

M8.2.2 Substrate Material Balance

The substrate material balance is written:
rate of accumulation = in by flow — out by flow ~ consumption

dVx . .

where Xor is the concentration of substrate in the feed stream.
M8.2.3 Specific Growth Rate
The reaction rate (mass of cells gencrated/volume time} is normaltly written in the follow-
ing form:
TR TR {M8.3}

where p is the specific growth rate coefficient. We can think of 1 as being similar (o a
first-order reaction rate constant; however, w is not constant-—it is a function of the sub-
strate conceatration as shown in Section M8.2.6, The units of . are time™",

M8.2.4 Yield

There is a relationship between the rate of generation of biomass and the rate of consump-

tton of substrate. Define Y as the yield, that is, the mass of cells produced per mass of sub-
strate consumed;

mass of cells produced F
mass of substrate consumed Fy
From (M8.4) we can write:
g (M8.5)
Fy = 8.
27y _
and substituting (M8.3) inlo (M8.5), we find:
I«t}ﬂrl -
yoo= 2L MS.£
2 v (M8.6)

We assume in the subsequent analysis that ¥ is a constant,
M8.25 Ditution Rate

Assuming a constant volume reactor, we can write (MRB.]) and (M8.2) as:
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x4 (M8.7)

S (M8.8)

Defining F/V as D, the dilution rate, and using the rate expressions in (M8.3) and (M8.6),
we find: :

dx, . .
Somm [) XI!-* f) .\f} + ”“‘\’1 (MS{))
dt ;
dy, _ Dy Dx By (M8. 1)
({t F .21- X 2 Y - ‘

Generally, it is assumed that there 1s po biomass in the leed stream, so x| ¢= 0. The biore-
actor modeling equations are thea normally written in the following form:

ix
At I (o~ D)x, (MB.11)
(i
dx, A .
(h_ =0 (..rzf "‘M ,\Tz) — Y (Mglz)

The dilution rate (D) is the same as the space velocity in the chemical reaction engineer-
ing literature, It s also the inverse of the reactor residence time and has units of time™!,
The expresstons for . (spectfic growth rate) are developed in the following section.

M8.2.6 Growth Rate Expressions

The growth rate coelficient is usually not constant. A number of functional relationships
between the growth rate coefficient and substrate concentration have been developed. The
most common are (1) Monod and (1) Substrate inhibition.

MONOD

The growth rate coefficient often varies in a hyperbolic fashion. The following forim
was proposed by Monod in 1942, Notice that p is first-order at low x, and zero order at
high x,.

= Hanax %2 _ (MS8.13)

k, X,

Notice that g is first-order at low x, and zero order at high x,. That is, when x, is low:
m 2 : 2

T TR Y R T



Sec, M8.2 Modeling Eguations 533

e Py

Xy
k -

M

and when x, s high:

p“ = H’II!EIX

Since the reaction rate is;

this means that the Monod deseription is stinilar to a second-order {bunolecular) reaction
when x, 15 low, since

. Panax

F = X2 %y

At

and to a first-order reaction when x, is high, since

P B X
Hquation (M8.13} is the same form as the Langmuir adsorption isotherm and the standard
rate cquation for enzyme-catalyzed reactions with a single substrale (Michachis-Menten
kinetics).

SUBSTRATE INHIBITION

Sometimes the growth rate coefficient increases at low substrale concentration, but de-
creases at high substrate concentration. The physical reason may be that the substrate has
a toxic effect on the biomass cells at a higher concentration. This effect is called substrate
inhibition and is represented by the following equation:

Lt

FIGURE M8.2 Comparison of Monod and substrale inhibition models for
growth rate.

i i e e L
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TABLE M3.1  Paramecters for Monod
and Substrate Inhibition Models

Monod Substraie Inhibition

Hongsy = 053 hrt Poax = 053 bt

k,, = 0.12 g/liter k, = 0.12gliter
k| = (14545 literfg

Y o= 04 ¥ = 0.4

Nyp = 4.0 gfliter N = 4.0 gftiter

o Pt

— M&. 14
k, + 1, + k x5 ( )

W
Naotice that the Monod equation is a special case of (M8.14), with &, = ().

SPECIFIC GROWTH RATE RELATIONSHIPS

The characteristic relationships between substrate (x,) and specific growth rate (p) are
quite different for Monod and substrate inhibition. The curves for p as a function of x, for
both models are compared i Figure M8.2. Notice that the substraie inhibition model cx-
hibits a maximum in the growth rate curve, while Monod becomes zero-order at high sub-
strate concentrations.

M8.3 STEADY-STATE SOLUTION

In this section, the MATELAB function fsolve will be used to solve for the steady-state
values of the biomass and substrate concentrations. The numerical values used in our sin-
ulations are shown in Table M8, 1.

We will study the following cases:

Case 1. Medium Dilution Rate, D = 0.3 hy!
Case 2. Low Dilution Rate, D, = .15 fhrt
Case 3, High Dilution Rate, D = 0.45 hr—1

EXAMPLE M8.1  Case 1 Results () = 0.3)

The function file bio_ss.m (Appendix 1) 18 set for Case § (D = 0. 3) and the substrate inlibi-
tion model (k1 = 0.4545). The MATLAB function tsolve ts used to solve for the steady-state
values by entering the following i the command window (with an initial guess of x (1) = 1
andx(2)y = 1)

» ¥ = fsolve('bio_ss*,{1;11)

e A LR . B SR Tl e
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The steady-state sofution obtained is:

0.9951
1.5122

Different initial guesses result in two other solutions for the substrate inhibition model. Also, the
Monod madel has two steady-state solutions. The reader should find the following results using
fsolve and bio_gs ., m, by entering different initial puesses,

Monod (2 steady-state solutions)

Equilibriuns | X, =0 Xy = 4.0
Equilibrium 2 X, = 1.5374 X, = L1565

Subsirate Inhibition (3 steady-state solutions)

Equilibriam | X, =0 Xy = 4.0
Equilibrium 2 xy, = 09951 Xy, = 13123
Equidibrium 3 = 1.5302 Xy, = (L1745

M8.4

Notice that Equilibriuin 3 on the S model is almost identical to Equilibrium 2 for the
Monod model. In this section we have discussed case | results (D = 0.3) only. Cases 2
and 3 will be discussed in Section M8.7,

In the next section we wil] analyze the dynamic behavior of this system, and in Sec-
tion M8.7 we will show how multiple steady-state solutions arise.

DYNAMIC BEHAVIOR

In the previous section we found that the Monod and substrate inhibition models had two
and three steady-state solutions, respectively, for the Case 1 parameter values. In this sec-
tion we perform sumulations of the dynamic behavior of this system. A function file
named Dio.mis shown in Appendix 2.

M8.4.1 Case 1 {D = 0.3), Substrate Inhibition Model

The initial simulation is with the substrate inhibition parameters under Case 1 condilions
({2 = 0.3). The simutations for two different initial conditions are shown in Figure M8.3.

» ftl,x1] = oded5{'bic',0,30,{1:11);

» {L2,%x2] = oded5('bio',0,30,([0.75%;21);
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FIGURE MS8.3  Substiate inhibition, Case [, x0 = [1,1] (solid), 10 = [(0,75.2]

(dashed),

Although both mitial conditions are reasonably close to the Equilibrium 2 solution
found m section 3, one simulation converges to Bguilibrium 1 {dashed line) while the
other converges to Equilibriun 3 (solid line). We [ind in the next section that Equilib-
rium 2 is unstable. Further simulations will be performed and analyzed in the phase-

plane (section 6),

LINEARIZATION

In this section we find be linear state-space and transfer function models. So that there is

no cofusion in notation, we will use the following form:

2= Az+ Bu
y=Cz

where:

The state-space malrices are:

o A A e e B TR
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oy Dy Xpby

AT m
Y 75

B - Y, 0 l

| Xap — Aop D,

T
C= _

0 1

where it is assumed that both states are outputs. The notation p| is used in the A matrix to
represent the derivative of growth rate with respect to substrate concentration, evaluated
at steady-state:

S
o=
X5,
For the Monod model:
a““'. }‘Llll'lxk'ﬂi
: VTS RTIORN T (MS.]S
. a’r?.x (km + xl\-)z )
and {or the substrate inhibition model:
W= _apﬁv B L S 1 (l }ZEIYE\)
' a"('la' km + xl\' + ki’ri\' (km + ":2.5' + klxi\)z
) . .
B e e P kX5 = Popax A2y (1 +2k o) -
oo 53 (MEZ.16)
(k,, + xy + kxs)
7
o= _._i’.”..l_l1.a.?;_.gf'ff.r.i.._f."__ kll)\)
! (km + st + k ix;.s‘)z

M8.5.1 Substrate Inhibition Model

Here we analyze the substrate inhibition model under Case | conditions. A MATLAB
m-file, bio_jac.m (Appendix 1), is used to generate the A malrix and the etgenvectors
and eigenvalues.

EQUILIBRIUM POINT 1

The steady-state value (section 3) is (x|, %y,) = (0.4).
The following command 15 entered:

»{jac,evec, lambdal = bio_jac({0;4]}
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where jac is the Jacobian (A matrix), evec is the eigenvector matrix and lambda are
the eigenvalues.

jac =
-0(.1139 0
~0.4652 -0.3000
evec =
0 0.3714
1.000¢ ~0.9285
lambda =
-0.3000 0
0 ~-3.113¢%
50,

—.4652 —0.300

0
oo g [

03714 !
—0.9285.

— 130
Am[ (0.1139 0 ]

A, = ~0.1139 £ = [

Since both eigenvalues are negative, the system is stable at equilibrium point 1, verifying
the simulation results shown in Section M8.4.

EQUILIBRIUM POINT 2
The steady-state value is (x| ,x,) = (0.9951,1.5122).

»[jac, evec, lanbdal = bio_jac([0.9951;1.5122])

jac =
0.0000 -0.,0679
-0.7500 ~0.1302
avaec =
$0.3714 0.2209
-0.9285 0.9753
lambda =
0.1698 0

U ~0.3000

The positive eigenvalue (0.1698) indicates that equilibrium 2 is uastable.
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Phase-Plane Analysis

EQUILIBRIUM POINT 3

The steady-state is (x| X, ) = (1.5302,0.1746).

»[jac, evec, lambdal =

jac =
0.0000 4.9048
~0,7500 -2.561%
evec =
0.9492 -0.3714
-0,3147 0.9285
lambda =
-0.3000 0
0 -2.2619

bio_jac({1.5302;0.1746])

Both cigenvalues are negative, indicating that equilibrium point 3 is stable.

PHASE-PLANE ANALYSIS

The m-lile bio_phas_gen.m (Appendix 2) was used to generate the following phase-
plane plot for the substrate inhibition model under Case | conditions (see Figure M8.4).
Notice that all initial conditions converge to either the washout steady-state (trivial solu-

FIGURE M8.4 Phase-plane plot For substrate inhibition model, Case | con-
ditions {x = stable steady-state, 0 = unstable steady-state).
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tton, equilibriumm 1) or equilibrium 3; while equilibrivm 2 is a saddle point (unstable).
These results are consistent with the stability analysis of Section M8.5.
A phase-plane plot for the Monod model was shown in Chapter 13,

M8.7 UNDERSTANDING MULTIPLE STEADY-STATES*

I this section we find analytically the steady-state solutions for the bioreactor model and
determine their stability.
The steady-state solutions (d, /dt = d ,/di = 0) of (M8, 11) and (M§.12) are:

0= (u -~ D)x, (MS.17)

where the subscript s indicates steady-state.
There are two different types of solutions to (M8.17) and (M8.18). One is known as
the trivial or “washout” solution. The other type is the nontrivial solution.

Vig8.7.1 Washout Condition

From (M8.17) and (M8.18) we can immediately see one solution, usually called the trivial
solution.
X, =0

b1

Ay T A (M&. 19y
This 1s also known as the washout condition, since the reactor concentrations are equal to
the feed concentrations; that is, there is no “reaction.” Since there is no biomass in the
feed stream, then there is no biomass in the reactor under these conditions; all of the cells
have been “washed out” of the reactor,

M8.7.2 Nontrivial Solutions

From (M&.17), assuming that x; + 0, then:

w, =D (MS.20)

X

which indicates that the speciflic growth rate is equal to the dilution rate, at steady-state.
From (M8.18) we find that:

D, (= ) = “}j b (M8.21)
and from (M8.20) and (M8.21):
Xy = Y, — xg) {(M8.22)

“This seetion contains a detailed analysis which the reader may wish 1o skip on a first reading.

o T R . T B R
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We can solve [or x5, by using the relationship for _as a function of v, (either Monod or
2\5 A p“_\ 2.\ .

substrate inhibition), since we know that p., = Dy (from (M8.20)). Let {1 ,) Tepresent

this general functionality. Then, we must solve:

i) = Dy (M8.23)

for x,,, then substitute this value into (M8.22} to solve for x| The specific cases of
Monod and substrate inhibition are shown in the subsections below.

MONOD

From {M&.13), the dilution ratc at stcady-state s

Monax oy J
= ey ME.24
e k’m + Aos ¢ :
Solving (M8.24) for x,,, we find:
K, by
Xy = Ko By (MS8.25)
Hrmax ™ s
and since p, = 1,
k,, D, Y oy
R (M&.26)

Honas — [)\

For (M8.26) to be feasible, we note that D < p . Actually, there is a more rigid require-
ment than that, From (M8.22) we note that the highest value that x,, can be is x,4, other-
wise ¢, will be less than zero. The maximum 1 in reality is then p(yy,), or ( from
(M8.22), leting x,, = ,1:2‘,’-5.):

e A ) o
i)\ Pl i‘L“.T'.“.-’..\_._%)“.". . (A’i’(}”('}(!) (sz?)
k'm + X'Z_,G.‘

We also see from (M8.26) that there is a single solution for x,, as a function of D This
means that there is a total of fwo steady-state solutions for the Monod modcl, since there
is also the washout (trivial) steady-state.

SUBSTRATE INHIBITION

We Tound in the previous subsection that there are two possible steady-states for the
Monod model, for a given dilation rate. [n this subscction we find the number ol possible
steady-states for the substrate inhibition model.

From {ME. 14} at steady-state:

T Pomax o5
' km + X’J.s- + kl":%.s'

(M8.28)

ESCOLA DE EMCINHARIA
COBIBLIO T wA
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From (M8&.28), we find that;

ks, + (E - --L-’-J-'-”-‘-‘-*-) Xy + k, =0 (M8.29)
ey

Since ., = D (M8.20), we substitute into (M8.29) to {ind:

Jey, 4 (_l. - p}';") X, +k, =0 (MR.3())
-8

Since (M8,30) is a quadratic equation, there will be two solutions for X5, This means that

there are three steady-state solutions for substrate inhibition, since there is also the

washout (trivial) stcady-state,

We see from (MB.30) that for positive values of v, the coefficient multiplying Xy,
must be negative, The implication is that ., must be greater than D (the samc result as
the Monod equation). This implication can be seen more clearly from the solution of the
quadratic formula for {M8.30):

— Sorman ) 4 [y B — dk
([ D, ) \’(! ) il (MB31;
2 2%, /
So, for solutions with physical significance:
( - “;)) > dkk,, (M8.32)
5
and Mo = 1, (M&.33)

Because of (MB.33), we know that the term inside the brackets in {M¥.32) is negative. For
(M&.32) to be satisTied, then we know:

(1 _ 'L;I;n) o \/4,!'(1]6,” (M8.34)

¥

which implics that:

1) = _Emd\

) <l (substrate inhibition) (M8.35)
L+ 2V ik k

Fl
We could have found the same result from viewing Figure M8.2. Notice that there is
a peak i the i curve, and again recall that D, = p_. The steady-state ditution rate, D,
cannot be above the peak in the x,, versus p, curve. We can find the peak by finding
dpfox,, = 0. From (M8.16):

Cl Femax (kur Mki‘:

_ o= () ME.36
ax?s (k + Ay + kl""'i\' ) ' K

M
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We sce from (M8.30) that dp,/dx, = 0 if:

[k
Xy, = Af on {(MR.37)
>~ Vi,
We can substituic this resule into (MB.28) (o find:
s
s\
A k. + . /{Iﬂn Kk Ky, A J/ ki 1k / k|
Ri PR e L.
\I kl . kl m \ km - " \fl km
oo B
|+ 2%, / ky
\ ] m
}J’]T\?I,\'
*le = ' e ——— (M8-3())
L+ 2V kk
s0 the maximum dilution rate (for the nontrivial steady-state) is;
T F‘LHJ’\X
\ 42 .\/Eclkm

which ts the same result as (M8.35).

M8.7.3 Summary of Steady-StatéwMonod and Substrate Inhibition

WASHOUT (BOTH MONOD AND SUBSTRATE INHIBITION)
Both Monod and substrate inhibition models have a washout (trivial) steady-state:

X, = {) Xy, = x'.Zj}f (]\48 I 9)

1y

NONTRIVIAL STEADY-STATE FOR MONOD

The nontrivial steady-state solutions {or substrate and biomass are:

k., D, .
Xy = - L 5 (MK.Z(\))
Hopax ™ L)\

with the requirement that D, < o Xoe/k, + X, (that is D < p(x00)

NONTRIVIAL STEARY-STATES FOR SUBSTRATE INHIBITION

The two nontrivial steady-state solutions for substrate are:
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2
Py \) ~ 4k k,,

LSRR

2 2k, ' )
and the associated biomass concentration is:
Xy = Y (.xzf\‘ o x?.-.v) (M8.25)
with the requirement for dilution rate:
D ==
' {(ME.3)

M8.7.4 Stability of the Steady-States

The stability ol each steady-state solution is determined from the eigenvalues of the Jaco-
bian matrix (matrix 4 in the state-space form). For a two-state system we know that the
eigenvalues are found by: _

det(A — A) = N = ir(AY A + det{A) = 0 (M8.40)

From Chapter 13 we know that the following conditions must be satisfied for stabifity of a
second-order system:
tr(A) <0 (MB8.41)
det(A) >0 {(M8.42)

That is, the eigenvalues (A) will be negative 1t conditions (M8.41) and (M8.42) are satis-
ficd. The Jacobian of the bioreactor modeling cquations (M8.11 and M8.12) is:

Moy — ‘{)s Xy s“‘:
A-l L o, (M8.43)

where we have used the notation p. to represent the derivative of growth rate with re-
spect to substrate concentration, evaluated at steady-state:

o,
no= Z):L (M8.44)
The trace and determinant of A are:
"Xy
(t(A) = (p, - D)~ D~ ’f-*-? by (M8.45)
det(A) = —(w, — D)) ( D, + ey ; l-s:) + tis';“;”’\ (M8.46)

We will use (MB.45), (M8.46), and the conditions shown in (M8.41) and (M8.42) to de-
termine the stability of cach steady-state.
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STABILITY OF WASHOUT STEADY-STATE -

Under washout conditions: x,, = ¥, and .x; = 0.
For stability of the washout steady-state, the following criteria then must be met.
First, [rom the requirement that tr(A) < O:

w, D= D <0 (M8.47)
and from the requirement that det(A) > O:
~(py, ~ DD =0 (M8 .48)

From (M8.47) we see that the requirement {or stability is then:

D, > *; | (M8.49)

while from (M8.48) the requirement for stability is:

D, >, (M8.50)

5
Notice that v, is evaluated at the substrate feed concentraiion lor the washout condition.
Perhaps the expression p (v, ;) should be used to designate this relationship. Comparing
(M8.49) and (M8.50), we see that (MB.50) is the more rigorous requirement for stability
of the washout steady-state.
The growth rate expression for Monod kinetics is:

Hoax A2

By = ) = (MB.51)
( ! ) km + X’Zﬁ'
white for substrate inhibition kinetics:
kby ax Aagy
T !L‘S_(x%_) — k, swax Ry (M8.52)

o 4 kel

fr
Notice that pu(x,,) 18 simply a shorthand expression for the specific growth rate evaluated
at the substrate feed concentration. We must use (M8.50) along with either (M8.51) or
(M$.52) to determine the stability of the washout steady-state. Notice that the washout
steady-state will only be stable if D, is high enough. We can think of 1, as a dynamic bi-
furcation parameter, because the stability of the washout steady-state will depend on the
value of the dilution rate.

Stability of Washout Steady-State for Monod. From (M8.50) and (M8.51), the
washout steady-state will be stable if:

ax Yot .
[')i_ ~ .If_’f'?‘.'.’.’.‘_. 25 (M8.53)
’ ]{}” "}_ ,‘(?ﬁ

and unstable if:

U SN
D < HMemax 125 (M8.54)
’ k’m + 'r?_j:\'
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Stability of Washout Steady-State for Substrate Inhibition. From (M8&.5()
and (M8.52), the washout steady-statc will be stable if:

2 fi X 0
I km + xzﬁ' + kl'x2fx
and unstable if:

Do Pmax o

- . M8.5¢
Yok, Ko + ks, ( E

NONTRIVIAL STEADY-STATES

For the nontrivial steady-states, £, = p_. The stability requirements for the nontrivial
steady-states are then:

TX.
‘ Y
from the tr(A) specification, and

Y

from the det(A) specification. Since D_ (and therefore ok Xy, and Y are positive, (M8.57)
and (M§.58) reduce to the requirement that:

W >0 (M8.59)

for stahility.

Stability of Monod at the Nontrivial Steady-State. From (M8.24);

Pk,

e i (M8.60)
! 2y

rH
We sce immediately that p) is always positive for the Monod model at the non-
trivial steady-state; therefore, the nonirivial steady-state is always stable. Recall that
D, < ;L_N(xzﬁ) for a nontrivial steady-state solution.

Stability of Substrate Inhibition at the Nontrivial Steady-States. We can
tell from the substrate inhibition curve in Figure M8.2 that a steady-state that is on the
left side of the peak will be stable (since ) > (1), while a steady-state on the right side
will be unstable (since p! < 0).

Numercally, from (M8.36):

P M’mnx_(km - klxgv)
! (ky + x5, + K53)°

(M8.61)

i
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The x,, that is on the left side of the peak, and is therefore stable, is (from (M8.31)):

Moy . | _ fmex )
) 2 (M8.62)

The x,, that is on the right side of the peak, and is therefore ansrable, is (from (M8.31)):

o | Muz,.,
max 1| 4 / | — Bmax) Ak k
( D ) \( .Dv ) 1% e

Also, recall that D, <, /1 + 2\/k|k
sohution).

{which is equivalent to requiring a real nontrivial

Er

M8.7.5 Case1(D,=0.3)

The reader should find the following results:

Monod
Equilibrium [—washout X, =0 Xy, = 4.0 unstable
Equilibrium 2—nontrivial X = 1.5374 JXoe = 0.1565 stable

Substrate Inhibition

Equilibrium [—washout X, =0 Xy, =4.0 stable

Equi_]ibrium 2—nomrivial X, = 0.9951 Xy, = 1.5123 unstahle (saddle point)
Equilibrium 3-—nontiivial Xy, = 1.5302 X, =0.1745  stable

M8.76 Case?2

For a steady-staie dilution rate of D= (.13, the reader should find the following results:

Monod

Equilibrium [—washout x, =0 Xa, = 4.0 unstable
Equilibrium 2-—nontrivial Xy, = 15811 Xy, = 00474 stable

Substrate Inhibition

Equilibrivum [—washout X, =0 Xy =40 unstable
Equilibrinm 2—nontrivial X, =—0.6104  x, =5520] not feasible

Equilibritmm 3-——nontrivial X, = 15809 Xy = 0.0478 stable

Although there is a mathematical solation for equilibrium 2, it is not physically feasible,
since it corresponds to & pegative biomass concentration,
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M8.7.7 Case 3

For a steady-state dilution rate of D, = 0.6, the student should find the following results:

Monod
Equilibrium 1——washout X, =0 Xy, = 4.0 stable
Equilibrium 2—aontrivial Xy, = 20114 X = -1.0286  not feasible

Steady-state 2 is pot feasible, because it corresponds (o a negative substrate concentration.

Substrate Inhibition

Equilibrivm 1--washout xX,=0 Xy = 4.0 stable
Equilibrium 2—nontrivial X, =413-020/  x,=-0.13 +0.50/ not feasible
Equilibrium 3-—nontrivial X, =413+020f x, =-0.13-0.50) not feasible

The second and third steady-states are not feasible because the concentrations for both the
biomass ard the substrate are complex.

There are some very Interesting changes in the dynamic hehavior of these models as
we vary the dilution rale (again, we can think of dilution rate as a bifurcation parameter).
Let us discuss this in order of the lowest dilution rate to the highest dilation rate.

LOW DILUTION RATE

Case 2 had the lowest dilution rate (D, = 0.15). The Monoed model has two steady-
slates—the washout steady-state is unstable and the other (nontrivial) steady-state 1s sta-
blc. This means that any set of initial conditions will eventually converge to the nontrivial
steady-state, for the Monod model. The sabstrate inhibition model has only two feasible
steady-states-—the washout steady-state is unstable and the high conversion steady-state is
stable.

The interesting result is that at Jow dilution rates, the substrate inhibition mode] be-
hives like the Monod model.

MEDIUM DILUTION RATE

Casc 1 had the next highest dilution rate (D, = 0.30). The Monod model has two stcady-
states——the washoul steady-state is unstable and the other (nontrivial) steady-state is sta-
ble. This means that any set of inttial conditions will eventually converge to the nontrivial
steady-state, for the Monod model. The substrate inhibition model has three feas-
ible steady-states. The washout (no conversion) steady-state is stable, the medium conver-
sion steady-state is unstable and the high conversion (low x, ) steady-state is stable. This
means that any set of initial conditions will converge to one of the two stable steady-
states. A phase-plane must be drawn to determine if a particular set of initial conditions
will lead to washout.
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HIGH DILUTION RATE

Case 3 had the highest dilution rate (22, = 0.60). Both models had only one feasible
steady-state, the washout steady-state, and it was stable. The student should be able to
“sketch” phase planes for all three conditions for each ol the models (Monod and sub-
strate inhibition).

BIFURCATION BEHAVIOR

The conditions for stability developed in Section M8.7 can be used to develop steady-
state input-ouiput diagrams for the numerical example presented in the previous sections.

M8.8.1 Diagram for the Monod Model

The diagram for the Monod model is shown in Figure M8.5. As calculated, the Monod
model has two steady-states for dilution rates that are less than the specific growth rate
under the feed conditions, 1 < (xy). The nontrivial steady-state is stable under those
conditions, while the washout steady-state is unstable. For D> p. (x,,) there is a single
steady-state, the washout steady-state, and it 1s stable.

Vi8.8.2 Diagram for the Substrate Inhibition Model

The diagram for the substrate inhibition model is shown in Figure M8.6. At tow dilu-
tion vates, where DD < p. (x4, there arc two steady-states (like the Monod model). The
nontrivial steady-state is stable under those conditions, while the washout steady-state
is unstable. For the intermediate dilution vate range, p,(xye) < Dy <, /1 + 2'\/!6]!(,”,

Monod Model ..

unstable stable

1l stable

0 0.1 0.2 0.3 0.4 Q.5 0.6

diltion rate

FIGURE M8.5 Input-output diagram for the Monod model.
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Substrate Inhibition Modet

unstable stable
4 v :
\
\
hS
3 \
g \\ unsiable
?_'_' ~
N
h
1 N
siabla_‘_’)
0 DA 0.2 0.3 0.4 0.5 0.6

dilution rate

FIGURE M8.6  Tuput-ottput diagram for the substrate inhibition model.

there are three steady-states. Two of these are stable, while one is unstable, The stable
sleady-state that is attained will depend upon the initial conditions of the concentra-
tions, or on the way that the process is started up. When the dilution rate meets the con-
dition that D> . (x,), there is a single steady-state, the washout steady-state, and it is
stable.

M8.8.3 Hysteresis Behavior for the Substrate Inhibition Model

It is interesting to note thal the way that the bioreactor is started up will determine the
steady-state concentrations that the reactor achieves. Look at Figure M8.6. Notice that if
we start at a very low dilution rate we will have only one stable steady-state, so the reactor
must operate at that condition. If we slowly increase the dilution rate, we remain on the
fower curve of Figure M8.6. When D > . /1 + 2\/!(,_/(,” (13, = 0.36126 [or this cxam-
ple), the stable solution suddenly “leaps” to the upper stable steady-state (washout condi-
tions). As we increase 1), further, we remain on the washout curve,

Now, assume thal we are starting out at a high dilution rate along the upper curve,
the washout conditions, As we slowly decrcase the dilution rate, we remain on the
washout curve until Dy = p{x,.), which is D, = 0.1861 for this example. The stable
steady-state then “jumps” down to the lower curve, As we continue to decrease the dilu-
tion rate further, we rematn on the lower curve,

The type of behavior shown in Figure M8.6 is known as hysteresis and is exhibited
by a number of processes, including exothermic chemical reactors and valves that “stick.”
The chemical reactor example is discussed further in Module 9,

The student should be able to show how the phase-plane behavior changes as a
function of dilution rate, for the example shown in Figure M8.6.
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SUMMARY

The modeling equations {or a biochemical reactor were developed for Monod and sub-
strate inhibition kinetics. We found that the Monod model normally has two steady-state
solutions, while the substrate inhibition model normally has three steady-state solutions.
At fow dilution rates the substrate inhibition model behaves similarly to the Monod
model, with a single stable steady-state. Washout will not be a problem at the low dilution
rales.

At medium dilution rates the sabstrate inhibition model behaves quite differently
from the Monod model. Depending on the initial condittons, the reactor will cither con-
verge to a high conversion or Lo washout conditions for the substrate inhibition model. It
has not been discussed thus far, but if we wish to operate at an intermediate (unstable)
conversion level, then feedback control must be used. Notice that the Monod model still
has only one stable point, and there is no danger of wash-out.

At bigh dilution rates, both reactor models have only one feasible solution-—
washoul. The flow ts simply too high (residence time too low) for any cell growth.

FURTHER READING

An excellent source for an inteoduction to biochemical engineering 1s:
Bailey, J.E., & D.F, Ollis. (1986). Biochemical Engincering Fundamentals, 2nd ed.
New York: McGraw-Hill.

STUDENT EXERCISES

1. In this module we developed the modeling equations assuming that no biomass s
fed to the reactor. Analyze the system studied for the case where the biomass Teed
concentration is 2.5% of the substrate feed concentration (so x, ;= 0.1 tor the nu-
merical values used in this module).

Is there still the possibility of a washout steady-state?

cascs 2 and 3 with the substrate inhibition model.
3. Data for specific growth rate coefficient as a function substrate concentration for a
hiochemical reactor are shown bhelow:

iy, glliter ., =1
0 0
0.1 0.38

(0.25 .54
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0.5 0.63
0.75 0.66
I 0.68
I.5 0.70
3 0.73
5 0.74

a. Fstimate the parameter values for a Monod madel (k,,,, 14,,..)

b. The production rate of cells (biomass) 18 D%x1. Find the steady-state value of
the dilution rate that maximizes the production rate of cells. The substrate {eed
concentration is 3 g/hiter.

¢. Fmd the steady-state concentration of bromass and substrate at this dilution rate.

d. Find the lincar state-space model at this dilution rate, with dilution rate and sub-
strate feed concentration as the mput variables. Also [ind the transfer function
relating dilution rale to biomass concentration.

e. Simulate the responses (using the nonhinear dynamic model) ol the concentra-
tions of biomass and substrate 10 step increases and decreases of 10% in the di-
fution rate (changes are from the dilution rvate found in b.). Compare these re-
sults with those of the hinear system (remember o convert deviation variables
back to physical variables).

4. In this module we have analyzed how the biomass and substrate concentrations
change depending on the dilution rate. H the purpose of a particuiar biochemical re-
actor is to produce cells, then we are more concerned with the production rate of
cells. The production rate is mass of cells produced per unit time:

steady-stale production rate of cells = D *x,

For both the Monod and substrate inhibition models presented in this modale, find
the dilution rate that maximizes the production rate of cells. Analyze the stability of
the reactor under this condition.

5. Consider a biochemical reactor where the consumption of substrate (v,) promoles
the growth of biomass (x;) and formation of product (x;). The three modeling equa-
tions are:

dx,

o R — Mix

di (n )|

dx, LY
L= P Kpp— Xo) — o b
'(if (K’J 1“) Y
{(x,

D+ o+ Bl

where the specific growth rate is a function of both the biomass concentration and
the product concentration:

R R, S PR A, S D
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I PP (I_ P/Pm)x?
k,, + xy + kx3

"3l

with the following parameter values:!

Variable Value Vatiable Value

4 (L4 glg o 2.2 ¢fg

B 0.2 hr! Pmas (.48 hr!
P, 50 g/liter K, 1.2 plliter

k| 0.04345 liter/y _ Lop 20 g/liter

D 0.202 ! x| o gfliter

X, 5 glliter X3 P24 glliter

a. Compare and contrast this model with that of the two-state model with substrate
inhibition kinetics presended in this module. _

b. Verify that the steady-state values for x,, x,, and x; presented in the table above
are correct. For a steady-state input of D= 0.202 (and all of the other parameters

~ constant), are there any additional solutions for the states (for example, the triv-

ial solution?), Analyze the stability of all steady-state solutions obtained.

¢. Perform dypamic simulations of the ponlinear model, with step changes of
+ 10% in the difution rate, Discuss the results of your step changes (i.c., docs an
increase or decrease in D have a greater effect on the biomass concentration?).
Compare your results with fincar simulations.

APPENDIXES

1 Steady-State Biochemical Reactor Model, bio_ss.m

function f = bhio_sgs{x)
b.w. beguette

{c) 16 Nov 92

reviged 18 July 96

find steady-states of bioreactor, using fsolve:

% = fsolve('bio',x0)

P OF OR OF OF OP oF o9 P

"This model is from Chapter 4 of the following monograph: Henson, M.A., & D.I%. Seborg
{ed.). (1997). Nonlinear Process Control. Upper Saddle River, NJ: Prentice-Hall.
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where =0 is a vector of initial guesses

(1) biomass
(2) = substrate

Mo

biomass ("bugs") consumes the substrate

D = dilution rate (F/V, bLime™-1)

Y = yield biomass/gsubstrate

mu = gpecilic growth rate

mumax = parameter (both Monod and Substrate Inhibition)

Jan = parameter {(both Monod and Substrate Inhibition)

k1 = parameter {(Subsgtrate Inhibition only, kl = 0 for Monod)
af = pubstrate feed concentration

the function vector consists of 2 equations
f = zeros(2,1);

parameter values

D= 0.3;
mumax = 0.53;
Y o= 9.4;

km = 0.12;

sf = 4.0;

ki = 0.4545;

Substrate Inhibition expression for specific growth rate
mu = mumax*x{2) /{kn+x{(2)+k1*x (2)*x{2)};

steady-state equations
fgolve varies x{1) and x(2) to drive f£{l) and £{(2) to zero

£{1) = (mu - DY*x(1);
F{2) = (sf - x(2))*D - mu*x(1)/Y;

3]

2 bio.m, Function File for Dynamic Simulation Using ode45
function xdot = bio(t,x}

h.w. beguette
() 18 July 96

dynamic equations for bioreactor, integrated using odedb,
using the following command

[t, %] = odedS{'bio',t0,tf,x0)
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where t0 iz the initial time (ugually 0), tf is

the final time and x0 is the initial condition vector
x0{1) = biomass initial condition

x0(2) = substrate initial condition

bicmass ("bugs") consumes the substrate

state variables

X{(1l} = bhiomass

¥ {2} = substrate

D = dilution rate {(F/V, time”-1)

Y = yield bliomass/substrate

mu = gpecific growth rate

mumax = parameter {(both Monced and Substrate Inhibition)

ki = parameter (bobth Monod and Substrate Inhibition)

ki = parameter (Substrate Inhibition only, k1 = 0 for Monod}
sf = gubgtrate feed concentration

the function vector consists of 2 equations
f = zeros(2,1);

parameter values

D= 0.3;
mumax = 0.53;
Y = 0.4;

km = 0.12;

st = 4.0;

k1 = 0.4545;

Substrate Inhibition expression for specific growth rate
Cmu = mumaxtx(2) / {(kmex(2) 4 k1rx(2) *%(2) ) ;

dynamic eguations

xdot (1) = {(mu - D) *x(1);
xdot {2) (sf - =(2))*D - mu*x{(1)/Y;

Il

3 Phase-Plane Plot for Biochemical Reactor, bio phas gen.m

bio_phas_gen.m

Ih.w. beguette
{c) 19 July 96

generates phase-plane plots for the bioreactor
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set-up the axis limits
axigs{ [0 1L.75 0 5]});

stable and unstable pointg for substrate
inhibition model

xiu = [0.9951];
®2u = [1.5122]7;

1s = {0;1.530271;
xds = [4;0.1746];

place an ‘x' on stable points
place a o' on unstable points

plot{xlu, x2u, 'wo',xls,x2s, 'wx')}
hold on

select different initial conditions
xl ranges from 0.1 teo 1.5 (every 0.35)
x2 ranges from 0 to 5 (every 1.25)
total of 16 initial conditions

¥linit = [0.1 0.4% 0.8 1.15 1.5 0.1 ¢.45 0.8 1.15 1.5];
¥2init = [ O 0 0 0 5 5 5 5 5] ;
xlinita = {1.5 1.

x2inita = [1.25 2

b =

w0 = [xlinit xlinita;x2init xZinital;
ncol = number of initial conditions
fmrow,ncol] = gsize(x0);

run simulations for each initial condition

for 1 = l:ncol;
[t,x] = oded5{'bio',0,30,[x0(:,1}1);
) plot{x(:,1),x{(:,2},'w")
’ end

xlabel (*x1'}
viliabel ('x2')
held off

Moduie 8
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Appendixes

4 Direct Calculation of the Eigenvalues

Here we calculate the eigenvalues of the nontrivial solution:

det(M — A) = 22 ~ tr( A\ + det(A) = 0 (M85.40)
where the trace and determinant are
, LX |,
tr(A) = p, — D, — p_— Pl (M8.45)
Ly, Xy
det(A) = —(p, - D) (D‘, s z) N e (M3.46)
For the nontrivial solution, p, = D
Lxy,
tr(A) = — D, - ""Y e (M8.A1)
X
CIC[(A) Tl Py Pog. (M8.A2)
Y
The roots of (MB.40) are:
tr(A) = V(tr A) — 4 det A
2
and since D =
Xty
R "
Nosm e (MS.Ad)
xvpﬂ:
Mg vy &M
A = (MB.AS)
N A ey
s Y = \’“‘l‘s YQ Y
- L _'r),p,;_ ,
2
B -’f'._srdeé__)
p'\ Y - }L\ y .
2
and our roots are;
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- g
Ay

8.A9
v {MB.A9)

AN =-p, and A, = —
and since p, = D, we are assured that one pole will always be negative. The second root
will only be positive if u! is negative. Since p! is positive for the Monod modcel, the
“nontrivial solution is stable as long as the solution is feasible (D < py(xy)). The g can
be either positive or negative for the substrate inhibition model, so a nontrivial steady-
state may either be stable or unstablc.

. R B A A T BB RS e



