

## Facultad de Ingeniería



# Análisis Matemático II Presentaciones en el Aula

# TEMA 5

Cálculo en campos escalares

Autor: Gustavo Lores 2015

# Función real dependiente de varias variables reales

Se define una función real de n variables reales como una aplicación  $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$  que asigna a cada punto  $\mathbf{x} = (x_1, x_2, ..., x_s)$  perteneciente al conjunto  $S \subseteq \mathbb{R}^n$  un único valor real y que pertenece a  $\mathbb{R}$ . El elemento  $y \in \mathbb{R}$ , que se escribe  $y = f(\mathbf{x}) = f(x_1, x_2, ..., x_s)$ , es la imagen de  $\mathbf{x}$  por f y el conjunto  $S \subseteq \mathbb{R}^n$  es el dominio de la función f.

Esta función o campo escalar es una transformación de un punto  $\mathbf{x} = (x_1, x_2, ..., x_s)$  sobre un eje f en  $\mathbb{R}^{-1}$ .

Variables: Puntos  $\mathbf{x} = (x_1, x_2, ..., x_n)$ .

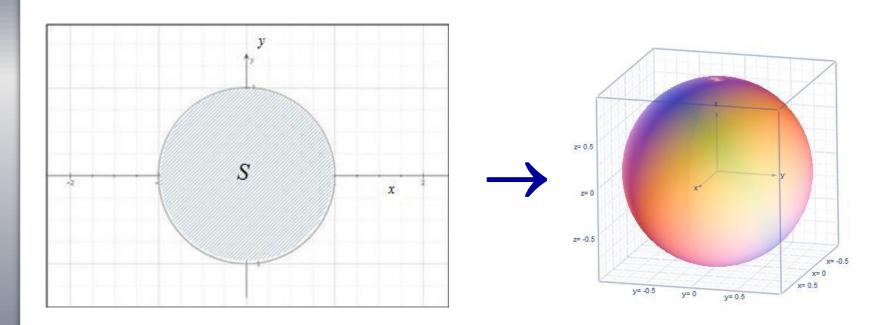
Distancia entre 2 puntos x:  $d(\mathbf{x}, \mathbf{x}^{\bullet}) \equiv \sqrt{(x_1 - x^{\bullet_1})^2 + (x_2 - x^{\bullet_2})^2 + \cdots + (x_s - x^{\bullet_s})^2}$ 

Entorno de un punto perteneciente a  $\mathbb{R}^*$ :  $N(\mathbf{x}^*;r)$  conjunto de todos los puntos  $\mathbf{x}$  más cercanos a  $\mathbf{x}^*$  que r, es decir tales que  $d(\mathbf{x},\mathbf{x}^*) < r$ .

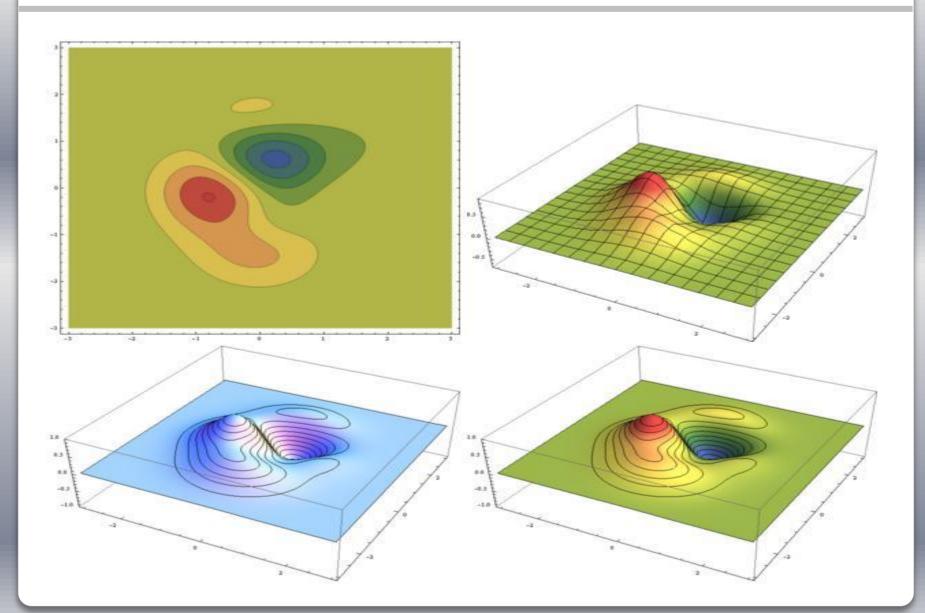
# Dominio e imagen de un campo escalar

Campo escalar:  $z(x, y) = \pm \sqrt{1 - x^2 - y^2}$ 

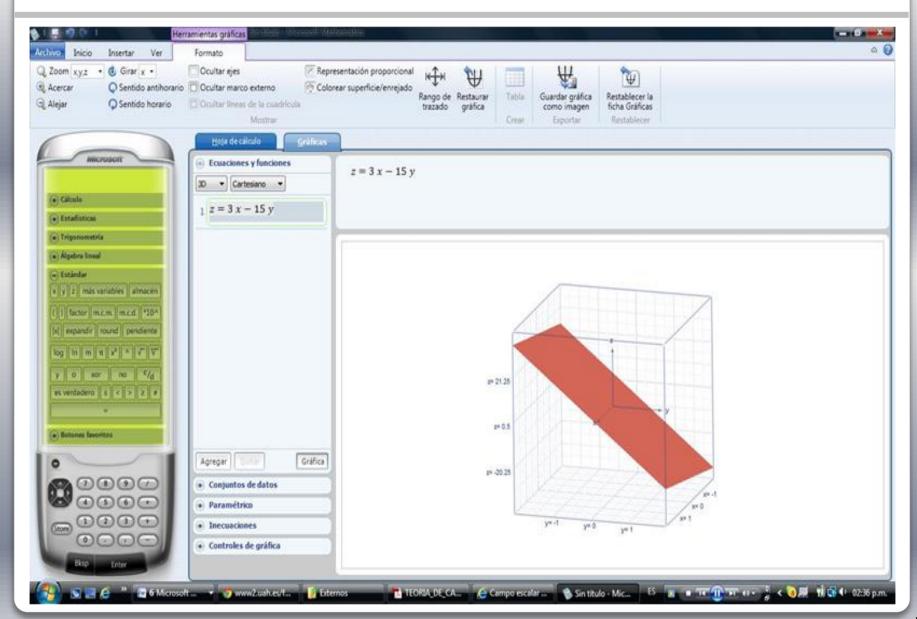
Definido para el conjunto de puntos  $S = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 1\}$ 



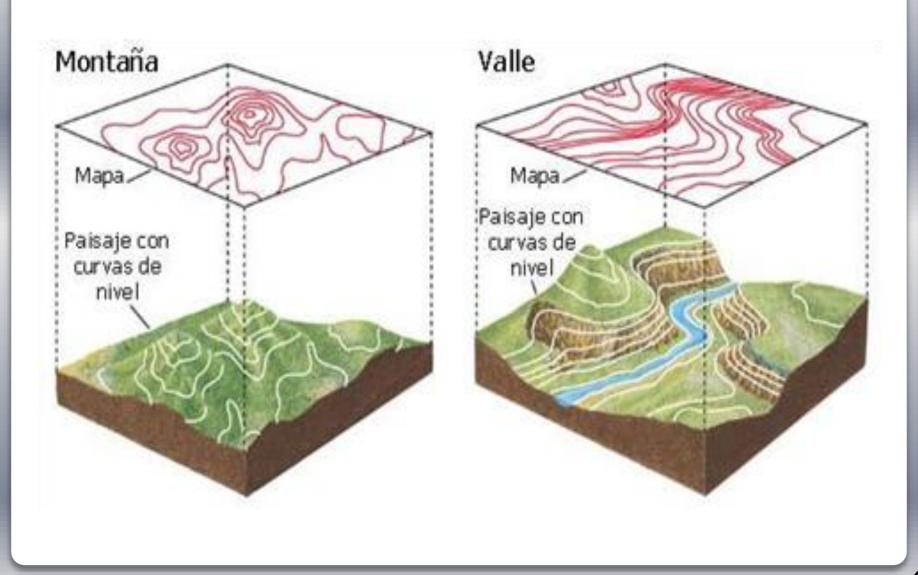
# Representaciones de un campo escalar $R^2 \rightarrow R$



#### **Microsoft Mathematics**



### Curvas de Nivel



# Límites y continuidad

Sea la función  $f(x_1, x_2, ..., x_n) = f(\mathbf{x})$ . Se dice que  $f(\mathbf{x})$  tiene un límite L cuando  $\mathbf{x} = x_1, x_2, ..., x_n$  tiende a  $\mathbf{x}^* = x^*_1, x^*_2, ..., x^*_n$ , y se escribe  $\lim_{\mathbf{x} \to \mathbf{x}} f(\mathbf{x}) = L$  si para cada  $\varepsilon > 0$  (no importa cuán pequeño) existe un correspondiente  $\delta\left(\varepsilon, \mathbf{x}^*\right) > 0$  tal que  $|f(\mathbf{x}) - L| < \varepsilon$  siempre que  $0 < |\mathbf{x} - \mathbf{x}^*| < \delta$ . Es decir,  $f(\mathbf{x})$  se puede acercar arbitrariamente a L haciendo  $\mathbf{x}$  suficientemente cercana a  $\mathbf{x}^*$ 

Sea la función  $f(x_1, x_2, ..., x_n) = f(\mathbf{x})$ , se dice que  $f(\mathbf{x})$  es continua en  $\mathbf{x}^*$  si  $\lim_{\mathbf{x} \to \mathbf{x}^*} f(\mathbf{x}) = f(\mathbf{x}^*)$ 

Para el caso de funciones de dos variables se tiene que:

Si 
$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

Si existen los límites  $\lim_{x\to a} f(x,y) \wedge \lim_{y\to b} f(x,y)$ , entonces

$$\lim_{x \to a} \left[ \lim_{y \to b} f(x, y) \right] = \lim_{y \to b} \left[ \lim_{x \to a} f(x, y) \right]$$

#### Derivadas Parciales de Funciones Reales de dos variables

Sea f(x,y) una función real de dos variables reales independientes,  $x \in y$ , definida en un entorno de un punto  $\mathbf{x}_0 = (x_0, y_0)$ .

Si se mantiene y constante, es decir  $y = y_0$ , entonces  $f(x,y) = f(x,y_0)$  depende sólo de x.

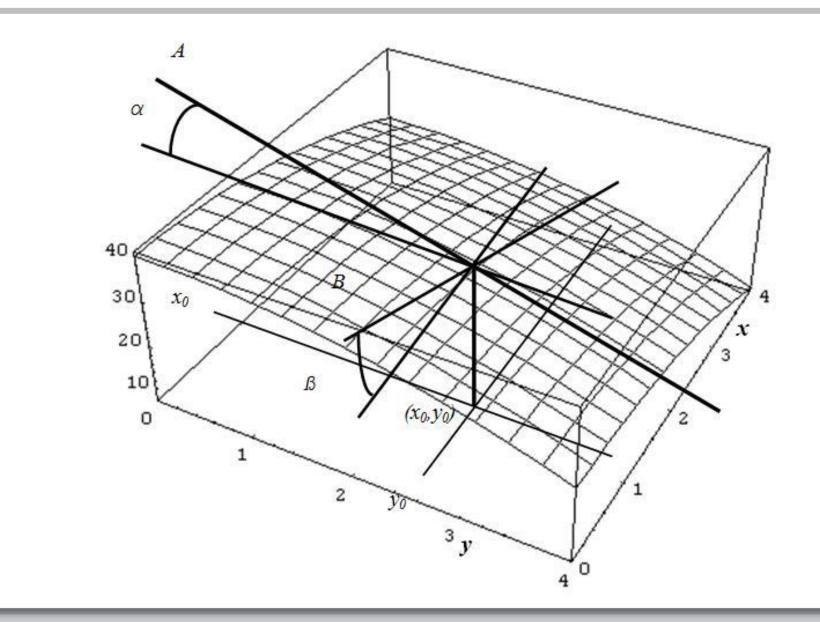
Si existe la derivada de  $f(x,y_0)$  respecto de x para un valor  $x=x_0$ , entonces el valor de esta derivada se denomina derivada parcial de f(x,y) respecto de x en el punto  $(x_0,y_0)$  y la notación que se emplea generalmente es  $\partial f/\partial x$  o bien  $f_x$ . Se tiene, por definición de derivada,

$$\left. \frac{\partial f}{\partial x} \right|_{(x_0, y_0)} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

En forma similar se define la derivada parcial de z = f(x,y) respecto de y; ahora se mantiene x constante, es decir igual a  $x_0$ , y derivando  $f(x_0,y)$  respecto de y. Entonces

$$\left. \frac{\partial f}{\partial y} \right|_{(x_0, y_0)} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta x) - f(x_0, y_0)}{\Delta y}$$

## Derivadas Parciales de Funciones Reales de dos variables



#### **Derivadas Parciales sucesivas**

Para un campo escalar dependiente de dos variables, las derivadas parciales  $\partial f/\partial x$  y  $\partial f/\partial y$  se llaman derivadas parciales primeras, o derivadas parciales de primer orden. Si estas funciones de (x,y) son derivadas una vez más, se obtienen las cuatro derivadas parciales segundas o derivadas parciales de segundo orden. La notación utilizada es

$$\frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} \right) = f_{xx}$$

$$\frac{\partial^{2} f}{\partial x \partial y} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y} \right) = f_{yx}$$

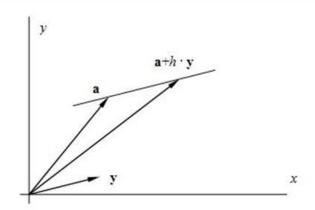
$$\frac{\partial^{2} f}{\partial y \partial x} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) = f_{xy}$$

$$\frac{\partial^{2} f}{\partial y^{2}} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial y} \right) = f_{yy}$$

Se puede demostrar que si todas las derivadas involucradas son funciones continuas, entonces las dos *derivadas parciales cruzadas* son iguales, de manera que no es problema el orden de derivación, o sea que

$$\frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial^2 f}{\partial y \, \partial x}$$

# Concepto de Derivada Direccional



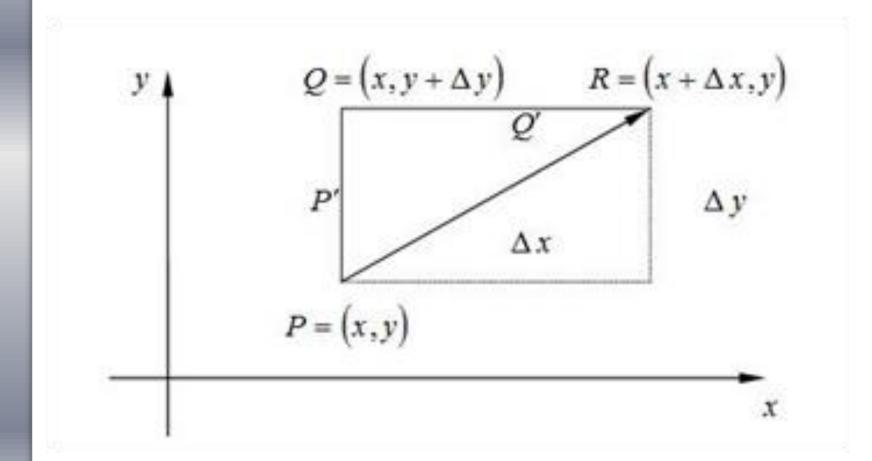
Dado un campo escalar  $f: S \to \mathbb{R}$ , donde  $S \subseteq \mathbb{R}^n$ . Sean **a** un punto interior a S e **y** un vector unitario en  $\mathbb{R}^n$ . La *derivada* de f en **a** en la dirección de **y** se representa con el símbolo  $f'(\mathbf{a}; \mathbf{y})$  y se define

$$f'(\mathbf{a}; \mathbf{y}) = h \xrightarrow{\lim} 0 \frac{f(\mathbf{a} + h \cdot \mathbf{y}) - f(\mathbf{a})}{h}$$
 cuando este límite existe.

En el caso de que  $\mathbb{R}^n$  sea  $\mathbb{R}^2$ , la expresión anterior se puede reescribir teniendo en cuenta que las variables son x,y, la distancia  $h=\sqrt{(x-a)^2+(y-b)^2}$ , las componentes del vector  $\mathbf{y}$ , unitario, son sus cosenos directores,  $\cos\alpha\wedge\sin\alpha$ , las componentes de  $\mathbf{a}$  son  $\mathbf{a}=(a,b)$ 

$$f'((a,b);(\cos\alpha, \sin\alpha)) = \sqrt{(x-a)^2 + (y-b)^2} \xrightarrow{\lim} 0 \frac{f((a+x\cos\alpha, b+y\sin\alpha)) - f(a,b)}{\sqrt{(x-a)^2 + (y-b)^2}}$$

### Diferencial de una función de dos variables





# Facultad de Ingeniería



# Análisis Matemático II Presentaciones en el Aula

# TEMA 5

Cálculo en campos escalares

2015 13 Autor: Gustavo Lores