

FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE JUJUY

1. PROGRAMA ANALÍTICO

ASIGNATURA					PERIODO LECTIVO	
Métodos de Simulación				2024		
CARRERA				CÁTEDRA		
INGENIERÍA INFORMÁTICA			Ingeniería de Procesos			
PLAN DE ESTUDIO	ÁREA	•	Curso	CARÁCTER		
2022	Ing. Inf.		3°	Teórico-Práctico		
RÉGIMEN DE DICTADO	CARGA HORARIA			ACREDITACIÓN		
Cuatrimestral	4 hs/semana	60 hs totales Examen final		nal		
OBJETIVOS GENERALES						

Lograr que los estudiantes alcancen las siguientes competencias:

- Modelar y simular sistemas discretos estocásticos.
- Simular sistemas continuos dinámicos.

CONTENIDOS

Unidad 1: Introducción

Definición de sistema, modelo y simulación. Tipos de simulación: identidad, cuasi-identidad, laboratorio, computadora. Modelos físicos y simbólicos. Solución analítica vs. solución numérica. Linealización. Estructura de un simulador. Ventajas y desventajas de la simulación. Aplicaciones de la simulación. Etapas de una simulación: formulación del problema, definición del sistema, formulación del modelo, recolección de datos, implementación del modelo, verificación, validación, diseño de experimentos, experimentación, interpretación, implementación y documentación. Ejemplo de una simulación.

Unidad 2: Sistemas y modelos

Entidades, atributos, eventos. Diagrama de bloque. Clasificación de variables: parámetros, variables manipulables, variables no manipulables, variables internas, variables de estado, variables de salida deseables y no deseables. Definición de estado. Clasificación de estados: dinámico o transitorio, estacionario, estable e inestable. Clasificación de sistemas: determinístico, estocástico, continuo y discreto. Clasificación de modelos. Modelos empíricos: tablas, gráficos, interpolación y regresión. Errores absolutos y relativos. Cifras significativas. Excel: referencias relativas y absolutas, orden de precedencia de operadores, gráficos, línea de tendencia.

Unidad 3: Sistemas discretos determinísticos

Redes de Petri con tiempo y capacidad. Modelo: lugares, transiciones, arcos, marcadores, tiempo, multiplicidad y arcos inhibidores. Reglas de funcionamiento: habilitación y ejecución. Diagrama

Programa Analítico - 1 - Periodo Lectivo 2024

de Gantt y de evolución de marcadores. Situaciones características: ejecución secuencial, conflicto, concurrencia, sincronización, confusión, fusión y prioridad. Procesos productivos. El programa HPSim. Planta embotelladora. Estación de trabajo: alimentador y descargador. Aplicaciones: determinación de la producción, del tiempo de producción, del estado en un tiempo dado, de los efectos de la modificación de la mano de obra o de equipos, de la mano de obra o equipos requeridos, de la capacidad requerida para los depósitos, del inventario crítico, del inventario mínimo y del cuello de botella.

Unidad 4: Probabilidad y estadística

Probabilidad. Regla de Laplace. Experimento. Espacio muestral. Puntos muestrales. Variable aleatoria. Espacio de rango de *X*. Variables aleatorias discretas. Función de masa de probabilidad. Distribución de probabilidad. Función de distribución acumulada. Valor esperado o promedio. Varianza. Desviación estándar. Moda. Mediana. Proceso Bernoulli: distribución de Bernoulli, distribución binomial y distribución geométrica. Variables aleatorias continuas. Función de densidad de probabilidad. Función de distribución acumulada. Valor esperado o promedio. Varianza. Desviación estándar. Moda. Mediana. Distribuciones continuas: uniforme, exponencial, normal, normal estándar, triangular. Proceso Poisson: sumador y divisor. Distribución Poisson y de Erlang.

Unidad 5: Modelado de entradas

Colección de datos. Identificación de la distribución de los datos: histogramas (frecuencias absolutas, relativas y acumuladas), selección de distribuciones teóricas. Estimación de parámetros: estadísticas preliminares (valor medio y varianza), estimadores sugeridos. Prueba de calidad del ajuste: Kolmogorov-Smirnov, Chi-cuadrado. Gráfico q-q: construcción e interpretación. Selección de una distribución sin datos.

Unidad 6: Generación de números aleatorios

Propiedades de los números aleatorios: uniformidad e independencia. Generación de números seudoaleatorios. Método de congruencia lineal. Densidad y longitud de ciclo. Propiedades deseadas del generador. Ajuste de los parámetros de un generador. Prueba de calidad de un generador: prueba de frecuencia, prueba de corridas o rachas, prueba de autocorrelación, prueba de huecos, prueba de póker. Generación de variables aleatorias. Método de la transformada inversa: método gráfico y método analítico. Generador para la distribución exponencial, uniforme, triangular, distribuciones discretas, evento con probabilidad p, generador uniforme discreto y distribución truncada. Método de la convolución. Generador para la distribución de Erlang. Generador para la distribución de Poisson. Transformación directa para la distribución normal: Schmeiser y teorema del límite central. Programación en Excel.

Unidad 7: Simulación de Monte Carlo y Análisis de salidas

Definición de la simulación de Monte Carlo. Etapas de la simulación: modelado, simulación y análisis. Solución analítica vs. simulación para un caso de estudio. Proyecto de inversión. Riesgo. Programas: @RISK, Crystal Ball, SimulAr. Naturaleza estocástica de los resultados.

Programa Analítico	- 2 -	Periodo Lectivo 2024

Procesamiento de los resultados. Intervalo de confianza de una variable. Intervalo de confianza del promedio. Simulación con Excel.

Unidad 8: Sistemas discretos estocásticos

Estado y eventos. Simulación con paso de reloj constante. Simulación con paso de reloj variable. Ejemplo de una simulación completa: departamento de mantenimiento de un aeropuerto. Enfoques: orientados a eventos, orientados a procesos y de propósitos especiales. Procesos típicos: generación, cola, servidor y terminación. Medidas típicas: utilización de servidores, tiempo de ocupación de servidores, longitud de cola, tiempo de espera. Definición de promedios basados en observación y en tiempo. *Software* de simulación para sistemas discretos: Arena, Cloudes, JaamSim, SIMIO y GPSS.

Unidad 9: Simulación de procesos continuos determinísticos

El modelo de espacio de estados. Métodos para sistemas de ecuaciones diferenciales ordinarias: Euler, Euler-Cromer, Euler-Richardson, Runge-Kutta de cuarto orden. Aplicación en Excel. Ejemplos: dique, enfriamiento de un cuerpo, movimiento armónico, órbita de un satélite. Modelo Depredador-Presa de Lotka-Volterra. Diagrama de Forrester. *Software* para procesos continuos determinísticos: Berkeley Madonna y Vensim.

2. BIBLIOGRAFÍA

Título	Autores	Editorial	Año de edición	Ejemplares disponibles
Conceptos y métodos en la simulación digital de eventos discretos	Fishman G.	Limusa	1978	1
Discrete event system simulation	Banks J.	Prentice Hall	1995	1
Manual de @RISK	Palisade Corporation		2006	1
Matemáticas para Computación	Lipschutz S.	McGraw-Hill	1992	4
Metodologías de modelización y simulación de eventos discretos.	Wainer G. A.	Nueva Librería	2003	3
Modelling and Simulation. Exploring Dynamic System Behaviour	Birta, L. G., Arbez G.	Springer	2010	1
Multifacetted modelling and discrete events simulation	Zeigler, B. P.	Academic Press	1984	3
Simulación	Ross S. M.	Prentice Hall México	1999	1
Simulación – Aplicaciones prácticas en la empresa	Pardo L., Valdés T.	Ediciones Diaz de Santos Madrid	1987	1

Programa Analítico - 3 - Periodo Lectivo 2024

FACULTAD DE INGENIERÍA Universidad Nacional de Jujuy

Simulación de Sistemas: Diseño, desarrollo e implantación	Shannon R.	Trillas	1988	1
Simulación Métodos y aplicaciones	Rios Insua D. et al.	Ra-ma	1997	1
Simulación por Computadora	Raczynski S.	Grupo Noriega Editores	1993	1
Simulación y análisis de sistemas con ProModel	Garcia Dunna E., Garcia Reyes H., Cardenas Barron L.	Pearson Educación	2006	1
Simulación. Un enfoque práctico	Bu R.	Limusa	1998	1
Teoría de Colas y Simulación de Eventos Discretos	Pazos Arias J. J., Suarez Gonzalez A., Diaz Redondo, R. P.	Pearson Educación	2003	2
Tratamiento de datos. Contiene CD	Guisande Gonzalez, C. et al.	Diaz de Santos	2006	2

San Salvador de Jujuy, 29 de julio de 2024.-

Enrique Eduardo Tarifa Métodos de Simulación Periodo Lectivo 2024