B CORROSION CHART

An R indicates that the material is resistant to the named chemical up to the temperature shown, subject to the limitations given in the notes. The notes are given at the end of the table.

A blank indicates that the material is unsuitable. ND indicates that no data was available for the particular combination of material and chemical.

This chart is reproduced with the permission of IPC Industrial Press Ltd.

NOTE

This appendix should be used as a guide only. Before a material is used its suitability should be cross-checked with the manufacturer.

											N	ИE	TA	٩L	S															
		Aluminium (a)			Aluminium	Bronze		Brass (b)			Cast Iron (c)			Copper	:		Gunmetal and	Bronzc (d)		High Si Iron	(14% SI) (C)		Lead			Mild Steel	BSS 15		Nickel (cast)	
Centigrade	20°	60°	100°	20"	60°	100°	20°	60°	100°	20°	60°	100°	20°	, 60,	100°	20°	60"	100°	20°	60°	100°	20°	60°	100"	20"	60°	100°	20°	60°	100°
Acetaldehyde Acetic acid (10%) Acetic acid (glac, & anh.) Acetic anhydride Acetone Other ketones Acetylene Acid fumes Alcohols (most fatty) Aliphatic esters	R R R' R R R R	R R R R R R	R R R R R R	R R R R R R	R R R R R	R R R R R R	R R R R	R R R R	R R R R ⁸² R	R R R R	R R R R	ND R R R R R R	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R	R R R R	R R R R R R	R R R R R R	R R R R R R	R R R R R	ND ND ND R R R R	,	R ¹¹ R R	No d R R R	ata R R	R R R R R R R	R R R R R	R R R R R
Alkyl chlorides Alum Aluminium chloride Ammonia, anhydrous Ammonia, aqueous Ammonium chloride Amyl acetate	R R ^{III} R R ⁸⁴ R	R R	ata R ND R R R R	R R ²⁰ R	No d R R ²⁰ R	R				R ¹¹ R R R	R R	R R	R R R	R R R R	R R R R ⁸³	R R R R	R R R R	R R R R	R R R R	R R R R R	R R R R R	R R R R R	R R R	R ¹⁰ R ⁶²	R ¹¹	R R No d	R	R R R	R R R	R R R
Aniline Antimony trichloride Aqua regia Aromatic solvents	R	R R	R R		No d R		R	R	R	R R ¹¹	R R R	R R R		No d		R	R	R	R R ¹¹	R	R R R	R R ⁺	R R R	, ND	1	No d		R R''	R R R	R R R
Beer Benzoic acid Boric acid Brines, saturated Bromine	R R R R	R R R R	R R R	R R R R	R R R	R R R	R R R	R R R	R R R	R R ⁸⁴ R ¹¹	R R	ND	R R R	R R R	R R R R ²⁰	R R R	R R R	R R R	R R R R	R R R	ND R R R	R ⁴ R R R ²⁴	R R	R ⁶²				R R R R	R R R	R R R
Calcium chloride Carbon disulphide Carbonic acid Carbon tetrachloride Caustic soda & potash	R R R	R R R	R R R	R R R R	R R R	R R R	R R	R R	R R	R R R ¹¹ R	R R R	R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R ⁺ R ND R	R R	R	R ^{III}	R R		R ²⁰ R R R R	R R R	R R R
Chlorates of Na, K, Ba Chlorine, dry Chlorine, wet Chlorides of Na, K, Mg Chloroacetic acids	R ^{II} R R	R R R	R R	R R R	R R R No d	R R R	R	R	R	R	R	R	R R	R R R No d	R R R ²⁰ lata	R R	R R R No d	R R R ata	R R R	R R R	R R R	R R R ⁴	R R R ⁴	R ⁴	R	R No d	R ata	R R R	R R R	R R R
Chlorobenzene Chloroform Chlorosulphonic acid Chromic acid (80%) Citric acid	R R'	ND R	ND R	R R R ²⁰ R	R R R ²⁰	R R R ²⁰ R	R	No d R No d	R	R R R ¹¹	R R R	R R	R R	No d R R	lata R R	R R	R R	R R	R R R	R No d R R R	R ata	R R R ⁺ R	R R R R ²⁵	i	R ¹¹ R ¹¹ R			R R R	R R R	R R
Copper salts (most) Cresylic acids (50%) Cyclohexane Detergents, synthetic Emulsifiers (all conc.)	R R R	R R R	R R R	R R R	R R R No d R	R R R ata R		No d]	No d No d	ata	R R R	R R R	R R R	R R R	R R R R	R R R R	R ¹⁶ R R	R R R No d No d	R R R ata	R I 6	R R R			No d No d No d	ata ata	R R R	R R R	R R R ata
Ether Fatty acids (> C ₆) Ferric chloride Ferrous sulphate Fluorinated refrigerants, acrosols, e.g. Freon	R ¹ R	R R	R R ND	R R R ²⁰	R R R ²⁰	R R R ²⁰ R		R R	R R		R R	R R	R R	R R	R R	R R	R R	R R	R R R R	R R	R R R	R R ⁺ R R	R R R	R ⁵⁸ R		R ND	R ND	R R	R R No da	R
Fluorine, dry Fluorine, wet Fluorine, wet Fluorilicie acid Formaldehyde (40%) Formic acid		R		R R R	R R R	R ¹¹ R	R	No d			No d		R R R	R R R	R R R	R R R	R R R	R R R	R R		R R	R ⁺ R R	R R R No d			R			R R	

		META	ALS		
Nickel-Copper Alloys (c)	Ni Resist (High Ni Iron) (c) Platinum	Stainless Steel 18/8 (f) Molybdenum Stainless	Steel 18/8 (1) Austenitic Ferricr Stainless Steel (x) Tantalum	Tin (g)	Thanium Zirconium
20° 60° 100°	20° 60° 100° 20° 60° 100° 20° 60°	0° 100° 20° 60° 100° 20° 60°	100° 20° 60° 100° 20° 60° 100°	20° 60° 100° 20°	° 60° 100° 20° 60° 100°
R R R R R R R R R R R R R	R ND R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R
R ² R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R 10 ¹² R 10 ²² R 10 ²² R 10 ² R	R ⁴⁴ R R R ² R R R R R R R R R	R ² R ² R ² R R R 3 R ⁹³ R ⁹³ R R R K R R R R R R R R R R R R R R R R R
R R R R R R R ND ND R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R	R R R R R R R R R ND R R ND No data
R R R R R R R R R R R R R R R R R R R	R R ND R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R
R R R R R R R R R R R R R R R R R	R	R R R R R R R R R R R R R R R R R R R	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R	R R R R R R R R R R R R R R R R R R R
R R R R R R R R R R R	R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R
R R R R R R R R No data	R ND ND R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R
R R R R R R R R	R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R	R ND R R R R R R R R R R R R R R R R R R
R R R R R R R R R R R R R R	No data	R R R R R R		R R R	R R R R R R R R R R R R

	METALS																													
		Aluminium (a)			Aluminium	Bronze		Brass (b)			Cast Iron (c)			Copper			Gunmetal and	Bronze (d)		High Si Iron	(14% St) (c)		Lead			Mild Steel	BSS IS		Nickel (cast)	
Centigrade	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	201	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°
Fruit juices Gelatine Glycerine Glycols Hexamine	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R R	R R R R	R R R R	R R R	R R R		R	No d No d R	ata	R R R R	R R R R	R R R R
Hydrazine Hydrobromie acid (50%) Hydrochloric acid (10%) Hydrochloric acid (cone.) Hydrochloric acid (cone.) Hydrofluoric acid (40%) Hydrofluoric acid (40%) Hydrofluoric acid (75%) Hydrogen peroxide (30%)	R	R R	R	R R ⁶³ R ⁶³ R ⁶³	R ²⁰	R ²⁰				I	No d ND	ata ND							R R	No d R R	ata R	ND R ^{4.1} R R			R	R	R	R R R R ²⁰ R	ND R	ND R
(30 - 90%) Hydrogen sulphide Hypochlorites Lactic acid (100%) Lead acetate Lime (CaO) Maleic acid	R R R R''		R R R R	R R R	R R No d R	R	R	R R No di	R		No d R	ata R	R ^{II} R R	R R R	R R R	R ¹¹		R R	R R R	R R R	R R R ND	R R ^{4,3} ND R ⁴	R 14.76		R ¹¹	R R No d	R	R ¹¹ R R R	R R R R	R R R R
Meat juices Mercuric chloride Mercury Milk & its products Moist air Molasses Naphtha Naphthalene Nickel salts Nitrates of Na. K. NH ₃	R R R R R	R R R R	R R R R R	R R R R ³⁴	R R R	R R R R ³⁰ R ata ata	R ³⁰	R	R	R R R R	No d R No d R R R No d R	R ata R R R	R R ³⁰ R R	R	R R R	R R R ³⁰	R R	R R R	R R R R	No d	R ata R R	R R R R	R R R R	ata R	R	No d	ata R		No d R R R R	
Nitric acid (<25%) Nitric acid (50%) Nitric acid (50%) Nitric acid (95%) Nitric acid, fuming Oils, essential Oils, mineral Oils, vegetable & animal Oxalic acid Ozone Paraffin wax Perchloric acid	R R R R R	R R R	R ND R R R	K R R R	R R R R	R R R R ata R	R I	No da No da	ata R	R R R	R R R ND R	R R R ND R	R R R R	R R R No d	R R R R ata	R R R R	R R R No d	R R R R ata R	R R R R R R R R R	R R R R R R	R R R R R R ND R	R R R ⁴	No da R R No da R		R R R R	R R R	R	R R	R R R No d R	R R R ata R
Phenol Phosphoric acid (25%) Phosphoric acid (50%) Phosphoric acid (95%) Phosphorus chlorides	R R	R	R	R R R R	R R R R	R R R R	R	R	R	R R''		R	R R	R R	R R	R	R	R	R R R R	R R R R	R R R R	R [‡] R R R	R R R R	R ¹⁹ R R ⁴ R	R ¹¹	No d	R	R R	R R	
Phosphorus pentoxide Phthalic acid Picric acid Pyridine Sea water	R R R	R ND R R	ND R ND R R	R	No d R No d R	R ata	R ⁶²	No di	R	R R*1	R	R	R R	R R	R R	R	R	R	R R R R	R R R R	R R R R	R	R R R			R No d No d	ata ata	R R I R R	R ND	R R ND
Silicic acid Silicone fluids Silver nitrate Sodium carbonate Sodium peroxide	R R R ⁴²	R R P R	R R	R R	R R	R R ⁴	R	No di R R	R	R R ¹¹ R ¹⁰	R	R ND R	R R	R R	R R R	R		ata R R	R R	No d R R	ND ata R R R	R R ⁴	R			No d No d R	ata	R R R	R R R	ND R R R

		METALS	
Nickel-Copper Alloys (¢)	Ni Resist (High Ni Iron) (c) Platinum	Stainless Steel 18/8 (f) Molybdenum Stainless Steel 18/8 (f) Austentite Ferrier Stainless Steel (x)	Tin (g) Titanium Zirconium
20° 60° 100°	20° 60° 100° 20° 60° 100° 20° 60° 100°	20° 60° 100° 20° 60° 100° 20° 60° 100° 20° 60° 100° 20° 60° 100° 2	20° 60° 100° 20° 60° 100° 20° 60° 100°
R R R R R R R R	R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R
R R R R R R R R R R R R R R R R R R R	R	R R R R R R R R R R R R R R R R R R R	R R No data No data R R R R R R R R R R R R R R R R R R R
R R R R R R No data R R R R R R R R R R R R R R R R R R R	R	R R R R R R R R R R	R
R R R R R R R R R R R R R	R ND ND R R R R R R R R R R R R R R R R	R	R R R R R R R R R R R R R R R R R R R
R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R ²⁰ R R R R ²³ No data No data R R R R R R R R R R R R R R R R R R
R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R ND ND ND R R R R	R R R R R R R R R R R R R R R R R R	R R

											ľ	ИE	TA	\ L	S															
		Aluminium (a)			Aluminium	Вгопис		Brass (b)			Cast Iron (c)			Copper	:		Gunmetal and	Bronze (d)		High Si Iron	(14% 31) (C)		Lead			Mild Steel	BSS 15		Nickel (cast)	
Centigrade	20°	60°	100°	20°	60°	100°	20°	, 60,	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60	100°	20	° 60°	100°
Sodium silicate Sodium sulphide Stannie chloride Starch Sugar, syrups, jams	R R R	R R R	R R R	R R ^{II} R	R R R	R R R	R R	R No d R	R ata R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R R	R ND R R	R R R	1	R R No d			R No c		R R R	R R R	R R R
Sulphanic acid Sulphates (Na, K, Mg, Ca) Sulphites Sulphonic acids Sulphur	R ⁵⁰ R R	R R No d	R R	R R	No d R R No d	ata R R	R	R No d	R	R R ³⁸ R ¹¹	R R	R R	R R	R R	R R	R R	R R No d	R R	R R R ³⁸ R	R R R	R R R	R R R	R R R	autu		No c	lata	R R	No c R R No c	lata R R
Sulphur dioxide, dry Sulphur dioxide, wet Sulphur trioxide Sulphur trioxide Sulphuric acid (< 50%) Sulphuric acid (70%)	R R ⁴	R R	R R	R R R ^{II} R	R R R R	R R R	R R ¹³	R R	R R	R	R		R R ¹¹ R	R R R	R R R	R R ⁺¹	R	R R	R R	R R R	R R R	R R R R	R R R ⁴ R	R R R R	R R ¹¹ R	R	R R	R R	R R	R R
Sulphuric acid (95%) Sulphuric acid, furning Sulphur chlorides Tallow Tannic acid (10%)	R ⁴ R R	R R	R R	R ⁶²	R R	R R	R	No d R	ata R	R R R ¹¹ R	R R R ¹¹ R	R R	R R	R R	R R	R	No d R	ata R	R R R	R R No da R R	R R uta R R	R R ⁴ R	R R		R R	R No c	lata	R	No c No c	
Tartaric acid Trichlorethylene Vinegar Water, distilled Water, soft	R R R R	R R R R	R R R R	R R R R ⁵³	R R R R	R R R	R R	R R	R R	R R R	R R	R	R R R ⁵³ R	R R R	R R	R R R ⁵³ R	R R R R	R R R	R R R R	R R R R	R ND R R R	R ⁴ R R ⁵³	R R	R R	R ¹³ R ⁵³ R ⁵³		R R	R ² R R R R	R R R R R	R R R R
Water, hard Yeast Zinc chloride	R ⁴³	R R	R R	R R	R No d R	R ata R	R	R No d	R ata	R R	R R		R R	R R	R R	R R	R R	R R	R R R	R R	R R		R No d R	R lata	R	R No c	R lata	R R R ²	R R R	R R R

		METALS			
Nickel-Copper Alloys (¢)	Ni Resist (High Ni Iron) (c) Platinum	Stainless Steel 18/8 (f) Molybdenum Stainless Steel 18/8 (f)	Austentite Ferrier Stainless Steel (x) Tantalum	Tin (g)	Zirconium
20° 60° 100°	20° 60° 100° 20° 60° 100° 20° 60° 100° 20°	° 60° 100° 20° 60° 100° 2	20° 60° 100° 20° 60° 100°	20° 60° 100° 20° 60° I	00° 20° 60° 100°
R R R No data R	R R R R R R R R R R R R R R R R R R R	4 R R R ³⁷ R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R NO data R R R R R R R R NO data R R R R R R R R NO data R R R R R R R R NO data R R R R R R R R R R NO data	No data R R R R F(734) R
R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	No data	R ¹¹ R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R

	THERMOPLASTIC RESINS														
	Acrylic Sheet (e.g. Perspex)	Acrylonitrile Butadiene Styrene Resins (1)	Nylon 66 Fibre (m)	Nylon 66 Plastics (m)	PCTFE	PTFE (n) PVDF (y)	Rigid Unplasticised PVC	Plasticised PVC							
Centigrade	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100° 20° 60° 100°	20° 60° 100°	20° 60° 100°							
Acetaldehyde Acetic acid (10%) Acetic acid (glac. & anh.) Acetic anhydride Acetone Other ketones Acetylene	R R ⁵⁰	R No data	R ND ND R R R R R R R R R No data	R R ⁵⁰ ND R ⁵⁰ No data R R R ND ND No data	R R ND R R R R R R50 R R R R ³⁷ R R ³⁷ No data	R R R R R R R R R R R R R R R R R R R	R ⁶ R R R ⁵⁰	R No data							
Acid fumes Alcohols (most fatty) Aliphatic esters Alkyl chlorides Alum	R R ⁶⁸ No data R R	R R	R R R R R R R R R	R R ⁵⁰ R ⁵⁰ R ND R ⁴⁶ ND ND R R R	R R R R R R R R R ND ND R R R R	R	R R R ³³ No data R R	No data No data No data No data R R							
Aluminium chloride Ammonia, anhydrous Ammonia, aqueous Ammonium chloride Amyl acetate	R R ⁶⁸ R R ⁴ R R	R R R R	R ⁴³ R R No data R R ND R R R	R ND ND	R R R R R R R R R R R R R R R	$ \begin{vmatrix} R^{50} & R & R & R & R & R \\ R & R & R & R^{107} & R^{107} & R^{107} \\ R & R & R & R^{107} & R^{107} & R^{107} \\ R^{50} & R & R & R & R \\ R & R & R & R & R \\ R & R &$	R R R R R R R R	R R No data R R							
Aniline Antimony trichloride Aqua regia Aromatic solvents Beer	R ⁶⁸ R	R R	R R R	R ⁵⁰ ND ND R R ⁵⁰ R R	R R ND No data R R R R ¹⁴ R	R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R	R R R R R ND	R R No data No data							
Benzoic acid Boric acid Brines, saturated Bromine Calcium chloride	R ND R R ⁶⁸ R R	R R R R R R	No data R ⁴³ R R R R R R R	R ⁵⁰ R R R R R R	R R ND R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R ⁸⁰ R R R R	ND R R R							
Carbon disulphide Carbonic acid Carbon tetrachloride Caustic soda & potash	R R	R R	R R ND No data R R R R R R	R ⁵⁰ ND ND R R ND R ND ND R R R	R R ND R R R R	$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	R R R ¹⁴ R R	R R No data							
Chlorates of Na, K, Ba Chlorine, dry Chlorine, wet Chlorides of Na, K, Mg Chloroacetic acids	R R ⁶⁸ ND R ⁴ R R No data	R R R R R R	R R R	R R ND	R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R	No data No data No data R R No data							
Chlorobenzene Chloroform Chlorosulphonic acid Chromic acid (80%) Citric acid	R R	R R R	R R R R R R R R R R R R R R R R R R	R ND ND	R R R R ND R R R R R R	R ¹⁴ R R R R R R R R R	ND R ¹⁹ R ¹⁹ R R	R							
Copper salts (most) Cresylic acids (50%) Cyclohexane Detergents, synthetic Emulsifiers (all conc.)	R ⁶⁸ R R R R R	R R	R R R R R R R R R R R R	R R R R ND ND R R R R R	R R R R R R R R R R R R R	R	R R R R R	R R No data R R R							
Ether Fatty acids (>C ₆) Ferric chloride Ferrous sulphate Fluorinated refrigerants, aerosols, e.g. Freon	R ND R R R R	R R R R R R	R R R R R R R R R R R R R R R R R R R	R ND ND R ND ND R ^{30,50} R R R	R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R	No data No data R R R R							
Fluorine, dry Fluorine, wet Fluosilicie acid Formaldehyde (40%) Formic acid	No data No data No data R ND R ¹⁰	R R R R R 10	R ⁴³ R	R ⁵⁰ R ⁵⁰	R R R NO data R R ND R	R ⁴⁸ R R R R R R R No data R R R R R R R R R R R R R R R R R R	R R R ¹⁵ R	No data R No data							

	THE	RMOPLA RESINS	ASTIC			THERMO RES		
Polyethylene Low Density	Pedyethylene High Density	Polycarbonate Resins	Polypropylene	Polystyrene	Mclumine Resins (0)	Furanc Rexin Rexin	Resins (p) Premol Form- addebyde Resins (r)	Polyester Resins
20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100° 20	0° 60° 100°	20° 60° 100°	20° 60° 100° 20° 60	° 100° 20° 60° 100°	20° 60° 100°
R ²⁷ R R R ²⁷ ND No data No data No data R ²⁷	R R ⁸⁰ R ⁵⁶ R R ⁶⁰ R R ⁶⁰ R R ⁶⁰ R R ⁶⁰ R R R ⁶ R R R ⁶ R	R R ND No data R ND ND No data R ND ND	R R ND R R R R R R R R R ND R R R R	No data No data	R ⁴ ND ND No data R R R R R R	No data	R R R ND ND R R R R R R R R R	No data R R ²³ R ³⁰ No data No data R R
No data R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R ND	R R R R R R R R R R R R R R R R R R R	R R ND ND R R	R R R R R R R R R R R R R ND ND ND	R	No data	No data No data R R ³⁰ R ⁶⁵ R R ³⁰ R ³⁰ R
No data R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R ND ND R R ND ND R R R R R	R R ND R R ND R R R R R R R R R R R R R	R R R	R R R R ND ND R R ND ND R ND ND	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R
R R R R R R	(8) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	R ND ND R ⁷ ND	R R ND R R R R R R R ND	R R No data	R R R R R R R ¹⁰ ND ND	R ND ND NO NO NO data R N ND ND NO data R ND	R R R R R R ND R ND ND	R R ³⁰ R ¹³ R R ³⁰ R ⁶⁵ R R ³⁰ R R ⁴⁰
R R No data	R R R R R R R R R R R R R R R R R R R	R ND ND ND ND	R R R R R R R ND ND	R No data No data	R R R R R R No data	R R R R R R R R R ND ND R R R R R R R ND ND R ND NO	R ND ND R R R	R R ³⁰ R ⁶⁵ R ³⁰
R R	R R gains	R R R R	R R ND R		R ND ND No data	R R R R R R R	R R R R R R R R R	R R R ³⁰
No data R ⁵⁶ R R ⁵⁶ R	R ¹³ R R ⁵⁰ R ⁵⁰ R ⁵⁶ R ⁵⁶ R R ⁵⁶ R ⁵⁶ R ⁵⁶ R ⁵⁶ R R ⁵⁶	R R ⁹⁸ R ⁹⁸ ND	No data R	No data R No data	R R R R R R R	No data R R ND R ⁶⁸ R ⁶ R R R R R R R R R R R R ND ND R NI	R ND ND R R R	No data R ⁶² R ⁶² No data
No data R R R	R ⁵⁶ R ⁸⁶ R R R R	ND R R R ND	R R ND R R R R R R R R	R R R	R R No data No data	R R R R R R R R R R ND ND R R R R ND ND R R R R	R R R R R R R R R	R R ⁴⁰ R ⁶⁵ R R ⁴⁰ R ⁶⁵ No data
R ³ R ³ R R R R	R ⁶ R R ⁵⁶ R R ⁵⁶ R	ND ND ND R R R ³² R ³²	R R ND R R ND R ND ND R	No data	No data No data R	No data R ³⁰ R R ND R R ND R ^{4,30} R ^{4,30}	R ND ND R R R R	No data No data R ¹⁵ R ³⁰ R R ¹⁵

	THERMOPLASTIC RESINS														
	Acrylic Sheet (e.g. Perspex)	Acrylonitrile Butadiene Styrenc Resins (1)	Nylon 66 Fibre (m)	Nylon 66 Plastics (m)	PCTFE	PTFE (n)	PVDF (y)	Rigid Unplasticised PVC	Plasticised PVC						
Centigrade	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°						
Fruit juices Gelatine Glycerine Glycols Hexamine	R ⁶⁸ R R R R R R ND No data	R R R R R R	R R NID R R ND R R R R R R R ⁴³ R R	R R R R R R R R ⁵⁰ ND R ⁵⁰ R ⁵⁰ ND No data	R R R R R R R R R R ND	R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R	R R R R R R R R	No data R No data No data						
Hydrazine Hydrobromic acid (50%) Hydrochloric acid (10%) Hydrochloric acid (conc.) Hydrocyanic acid	No data R R R R R R ⁵⁰	No data R R R R R R ¹⁰ R ¹⁰	No data	No data	No data R R R R R R R R R R R R R ND	R R R R R R R R R R R R R R	No data R R R R R R R R R R R R	No data R ³² R R R R ³ R ³ R R	No data R R R R R ND No data						
Hydrofluoric acid (40%) Hydrofluoric acid (75%) Hydrogen peroxide (30%) (30 – 90%) Hydrogen sulphide	R ND	R R No data	No data	R ND ND	R R R R R R R R R R R R ND R R R	R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R	R ³⁰ R ¹⁹ R R R R ³⁰ R R	R R R						
Hypochlorites Lactic acid (100%) Lead acetate Lime (CaO) Maleic acid More interests	R ³⁴ ND R R ⁶⁸ R ⁶⁸ R R R R ⁶⁸ R	R R R R R R R R R R	R R ⁴³ R R R R R R ⁴³ R R No data	R ⁵⁰ R ⁵⁰ ND R R ND R ⁵⁰ ND ND R R R	R R R ND No data R R R ND R ND R ND	R R R R R R R R R R R R R R R R R R R	R 107 R 107 R 107 R R R R R R R R R R R R R R R R R R R	R ⁵⁰ R R ¹⁵ R R R R R R R ³⁷ R R	No data R R No data No data						
Meat juices Mercuric chloride Mercury Milk & its products Moist air Molasses	R ND R R R R R R R R	R R R R R	R ⁴³ R R R R ND R R R R R R R R R R R R R R	R ⁵⁰ R R R R R R R R R R R	R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R	R No data R R						
Naphtha Naphthalene Nickel salts Nitrates of Na. K. NH ₃ Nitric acid (<25%)	R ⁴ R R R R R R ¹⁰	R R R R R	R R R No data R ⁴³ R ³¹ R No data	No data R ND ND No data R R ND	R R R R R R R	R R R R R R R R R R R R R	R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	No data R R R R R ND						
Nitric acid (50%) Nitric acid (95%) Nitric acid, fuming Oils, essential Oils, mineral	R ⁶² R ⁶² R R	R R R R	R R R R R R	R R R R R R	R R R R R R R R ND No data R R R	R R R R R R R R R R R R R R R	R R R R ND ND R R R R R R R	R R ³⁰ R ⁶⁶ R R ⁶² R R R	R ND No data No data						
Oils, vegetable & animal Oxalic acid Ozone Paraffin wax Perchloric acid	R R R R ND R R No data	R R R R No data	R R R R ND ND No data R R R	R R R R ⁵⁰ ND ND R ⁵⁰ ND ND R R R	R R ND R R R R R R R R R	R R R R R R R R R R R R	R R R R R R R R R R R R	R R R R R R R R R R R R R R R	No data R R No data ND						
Phenol Phosphoric acid (25%) Phosphoric acid (50%) Phosphoric acid (95%) Phosphorus chlorides	R R R R No data	R R R No data	No data	No data	R R R R R R R R R R R R R R	R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R	R R R R R R ⁵⁵ R	ND R R No data No data No data						
Phosphorus pentoxide Phthalic acid Picric acid Pyridine Sea water	R ⁶⁸ R No data R ⁶⁸ No data R R	No data No data No data R R	No data No data R R R R R R	R R ND R R ND ND R R R R	No data R R ND No data R R ND R R R	No data R R R R R R R R R R R R	R R R R R R R R R R R R R R R R	R R ⁶⁸ R R R ¹⁰ R ND R R	R ND R ¹⁰⁵ ND No data R R						
Silicic acid Silicone fluids Silver nitrate Sodium carbonate Sodium peroxide	No data R ⁴ ₃₀ R R R R R R ⁴	R R No data R R ⁶⁴ R R R ND	R ND ND R R R R R R R R R	No data R ND ND R ND ND R ND ND	R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R	R R No data R R R R R R	No data No data No data R ND R R						

	THE	RMOPLA RESINS	STIC		THE	RMOSETTING RESINS	G
Polyethylene Low Density	Polyethylene High Density	Polycarbonate Resins	Polypropylene Polystyrene	Melamine Resins (0)	Furanc Resin	Epoxy Resins (p)	aldehyde Resins (r) Polyester Resins
20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100° 20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100° 20° 60	0° 100° 20° 60° 100°
R R No data R R R R No data No data R R R R R R R R R R R R R R R R	N N N N N N N N N N N N N N N N N N N	R ND R R ND ND ND ND R R R ND R ND	R R ND R ¹³ R ND NO data R R R ³⁰ R R R R ND R R R NO data R ¹³ ND ND NO data R ⁵⁶ R ²⁷ R ²⁷ R R R ⁵⁰ R R R R ND ND R R NO data R ND ND NO data	R R R R R R R R R R R R R R ND ND ND R	No data No data R R R R R R ND ND ND No data R ND ND R R R No data	R R R R R R R R R R R R R R R R R R R	data
R R R R R R	R R R R R R R R R R R R R R R R R R R	R R ND ND R ^{7,34}	R	R R R ¹⁰	R R ND	R ³⁰ ND ND	D ND R D ND R R ⁶⁵ R ND
R R R R R R R R No data	B B B B B B B B B B B B B B B B B B B	R R ND ND ND	$ \begin{vmatrix} R & R & ND \\ R^2 & R & ND \\ R^2_{11} & R & R \\ R & R & R \\ R & R & ND \\ R & ND & ND \\ R & ND & ND \\ \end{vmatrix} $	R ND ND R R R	No data RRRR RRR RRR RRR	R No	D ND R R R R ⁶⁵ data R R ³⁰ ND R R ¹³ R data No data
R R R R R R R R R R R R R R R R R R R	S S S S S S S S S S S S S S S S S S S	R R R R R R R R ND ND ND ND ND ND R ₇ .775 R	R° R ND R R R R R R R R R R R R R R R R R	No data R No data R ²³ R	No data R ND ND R R R R No data R R R R R R R R No data R R R	R	data R R R R R R R R R R R R R R R R R R
R ⁵⁰ R R ⁵⁰ R R ⁵⁰ R R ⁵⁰ R R R ⁵⁰ R R R	a N N N N N N N N N N N N N N N N N N N	ND ND R R R ND R ND R R R R R R R R R R	R R R R R R R R R R NO data R R ND R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	No data R R R No data R ND ND No data R R R No data R R R R		R R R R R R R R D ND R R ³⁰ data No data R R R R R ¹⁰
R R R R R R R R R R R R R R R No data	R R R R R R R R R R R R R R R R R R R	R R R R ND ND ND	R	R R R R ND R ND ND	No data ND R R ND No data R R R No data	R ^{4,30} R R R R R R R R R	R R ³⁰ R ⁶⁵
R R R R R ⁵⁰ R R R R R R	R R R R R R R R R R R R R R R R R R R	R R ND R R R R ND	R R R R R R R R R R R ND R R ND No data R R ND R R R ND R R NO data	R R R R R R R R R R R R R	R R R No data R R R No data R R R No data	R	data No data data No data

			ТНЕ	RMOPI RESIN					
	Acrylic Sheet (e.g. Perspex)	Acrylonitrile Butadiene Styrene Resins (1)	Nylon 66 Fibre (m)	Nylon 66 Plastics (m)	PCTFE	PTFE (n)	PVDF (y)	Rigid Unplasticised PVC	Plasticised PVC
Centigrade	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°
Sodium silicate Sodium sulphide Stannie chloride Starch Sugar, syrups, jams Sulphamic acid Sulphates (Na. K. Mg, Ca) Sulphites Sulphonic acids Sulphonic acids Sulphonic acids Sulphur dioxide, dry Sulphur dioxide, wet Sulphur cacid (-50%) Sulphuric acid (-50%) Sulphuric acid, furning Sulphur chlorides Tallow	R R R R R R R R R R R R R R R R R R No data R R R R R R R R R R R R R R R R R R	R R R R R No data R R No data R No data R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R No data No data No data No data	R R R R R ND ND ND R R R R NO data R NO DND ND ND ND R ND ND R ND	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R NO data No data No data No data No data No data R R ND No data R ND
Tannic acid (10%)	R ND	No data	R ND ND	R ND ND	R R ND	RRR	R R R	R R	R ND
Tartarie acid Trichlorethylene Vinegar Water, distilled Water, soft	R R R R ⁶⁸ R R R R	R R R R R R	R ND ND R R R R R R	R R ⁵⁰ ND R R R ⁵⁰ R ⁵⁰ ND ND R R ⁵⁰ R R R ⁵⁰ R	R R ND R R R R R R R R R	R R R R ¹⁴ R R R R R R R R R R R	R R R R R R R R R R R R R R R	R R R R R R R R	R ND R ND No data R R
Water, hard Yeast Zinc chloride	R R R R ⁶⁸ R R ⁶⁸	R R R R R	R R R R R R R ⁴³ R R	R R ^{SO} R R ND ND	R R R R R R R R R	R R R R R R R R R	R R R R R R R R R	R R R ND R R	R R R ND R R

	ТНЕ	RMOPLA RESINS	ASTIC			тнек	RMOSET RESINS	TING	
Polyethylene Low Density	Polyethylene High Density	Polycarbonate Resins	Polypropylene	Polystyrene	Mclamine Resins (0)	Furanc Resin	Epoxy Resins (p)	Phenol Formaldehyde Resins (r)	Polyester Resins
20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°
R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	ND No data No data R ND R No data R R ND No data	R R R R R R R R R R R R R R ND R R ND No data R R R ND No data R R R R R R R R R R R R R R R R R R	No data No data No data R¹ R R R R R No data R R R R No data R R No data No data	R R ND ND R R R ND ND R R R R ND ND R R R R	R R R R R R R R R ND No data No data R R R R R R R R R R R R R R R R R R	R R R ⁶⁸ R R R R R R R R R R No data R R ³⁰ R R R R R R ²⁴	R	R R R65 R R R65 No data No data No data R R ³⁰ R65 No data R R ³⁰ R65 No data R NO data R NO DATA R ND ND R ³⁰ ND ND R ³⁰ ND ND R ³⁰ R R R ³⁰ R
ND ND R R R	R ⁶⁰ No data R ⁵⁰ ND ND R ⁵⁶ R	R ND ND	No data R R ND R R ND	No data R	ND ND R R R R	R R R No data No data	1	R ND ND R R R R R R	No data No data R R R
R R R R R R R R R R	R R R R R R R R R R R R R R R	R R No data R R R R R R R	R R ND R R ND R R R R R	R R R R R R R R R	R R R R R R R R	No data R R R No data R R R R R R R R	R R ³ R R R R	R R R R R R ND ND R R R R R R R R R	R R R R R R R R R R R R R R R R R R R
R ND R R	R R R R	ND R R	R R ND R R ND	No data R R	R R R	No data R R R	R R	No data R ND ND	No data R R ³⁰ R ⁶⁵

										R	UB	BE	R	5													
		Butyl Rubber and Halo-Butyl	Rubber		Ethylene Propylene	Rubber (q)		Hard Rubber	(Ebonite) (h)		Soft Natural	Rubber (h)		Neopeope (i)			Nitrile Rubber			Chlorosulphonated	Polyethylene		Polyurethane	Kubber (v)		Silicone	Rubbers (k)
	20"	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60"	100°	20°	60°	100°	20°	60°	100°	20°	60"	100°	2()°	60°	100"
Acetaldehyde Acetic acid (10%) Acetic acid (glac. & anh.) Acetic anhydride Acetione Other ketones	R R ¹⁴ R ⁸⁰ R R ¹³	R R R R	ND R R R	R^{60}	R R ¹⁺ R ¹⁺ No d: R ⁶⁰ R ⁶⁰		R R R R R R ₈₀	R R R ¹⁴ R ³⁰ R	R R R	R ⁸⁰ R ⁶⁰ R ³⁰		ND ND	R R ⁹⁵ R	R R	R ¹⁴ ND	R R ⁺	R		R R ⁸⁵ R R ¹⁵	R R ND	ND ND ND	ND R ⁸⁰ R ⁸⁰	ND R ⁸⁰		R R R ¹⁷ R R ¹⁷ R ¹⁷	R R R R	R R R R
Acetylene Acid fumes Alcohols (most fatty) Aliphatic esters Alkyl chlorides	R R ² R	R ⁸⁰ R R	R	R ² R ⁶⁰	No da R ² R ⁶⁰	ata R ²	R ⁸⁰ R ² R ³⁰ 60	R R R	R R R	R ² R ⁶⁰	R R	R ^{2,80}	R ¹⁴ R ² R	R R R No d	R R R ¹⁴	R R ² R	ND R	ND R	R ¹⁴ R R	R R R	R R ² R	ND R ² R ⁴	ND R ² R ⁴		R ² R R ³⁰ R ²¹	No da R R R R	R R R ³⁰ R R
Alum Aluminium chloride Ammonia, anhydrous Ammonia, aqueous Ammonium chloride	R R R R	R R R R	R R ND R	R R R R	R R R R	R R ND R R	R R R R	R R R R	R R R R	R R R ⁸⁰ R	R R R	R R R ^{SO} R	R R R R	R R R R	R R R R	R R R R	R R R R	R R R	R R R ¹⁰ R R	R R ND R R	R R ND R	R R R ⁸⁰ R ³⁰ R	R R R ^{SO} R		R R R R	R R R R	R R [‡] R R
Amyl acetate Aniline Antimony trichloride Aqua regia Aromatic solvents	R ⁸⁰ R R	R R	ND R		No di	ata	R	R	R	R	R	R		No d	ata	R ⁶²	No da R	nta	R R ⁵⁰	R	R	ND	ND		R ²¹ R R	R R R	R R R
Beer Benzoie aeid Borie aeid Brines, saturated Bromine	R R R	R R R	R R R	R R R	R R R R No di	R R R R	R R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R ^{S6} R R	R No di R R	R ata R R	R R R R	R R R		R R R	R R R	R R R
Calcium chloride Carbon disulphide Carbonic acid Carbon tetrachloride Caustic soda & potash	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R ¹³	R R	R R R	R R R	R R R	R R R	R R R	R R R	R ND R	R ND R	R R R	R R R	R R R	R R R	R R R		R R R R ²¹ R	R R R R	R R R R
Chlorates of Na, K, Ba Chlorine, dry Chlorine, wet Chlorides of Na, K, Mg Chloroacetic acids Chlorobenzene	R R ⁵⁰ R ⁸⁰ R R ¹⁰	R R R	R R R	R R ⁵⁰ R ⁵⁰ R	R R ⁵⁰ R ⁵⁰ R	R R ⁵⁰ R ⁵⁰ R	R R ³⁰ R ¹³ R R ²	R R R R	R R R R	R	R R	R R ⁸⁰	R R	No d R R	R ND	R	No di R	nta R	R R R	R No di ND R	R ata ND R	R R R ⁸⁰	R R		R R R R R	R ³⁰ R R R R	R R R R
Chloroform Chlorosulphonic acid Chromic acid (80%) Citric acid Copper salts (most)	R ¹³ R R	R ¹³ R R	R R	R ¹³ R R	R ¹³ R	R R	R ¹³ R R	R R R	ND R R	R R	R R	R	R R	R R	R R	R R	R R	R ND	R ³⁰ R R	No da R R R	nta ND R R	R ³⁰ R R	ND R R			No di	ata R R R
Cresylic acids (50%) Cyclohexane Detergents, synthetic Emulsifiers (all conc.) Ether	R ⁴ R ¹³ R	R R	R R	R ¹³	No di R ¹³ No di	R ¹³	R R	R R ⁴	R R ⁴	1	R ^{so} No da		К R ³⁰	R R	R R	R R R	R R R	R R R	R R R ³⁰	R R	R R	R ³⁰	ND R ³⁰ ND		R ²¹ R ²¹ R R	R ND R R	R ND R
Fatty acids (>C ₆) Ferrie chloride Ferrous sulphate Fluorinated refrigerants, acrosols, e.g. Freon	R ¹ R R	R ⁸⁰ R R	R R R	R R	R ⁸⁰ R R No di No di		R ⁸⁰ R R	R ₈₀ R R R	R R	R ⁸⁰ R	R R No da	R R ata	R R R	R R R	R R R	R R R R	R⁴ R K	R R	R R R	R R R	R R R		R ⁸⁰ R R ND ND		R R R	R R R	R R R
Fluorine, dry Fluorine, wet Fluosilicie acid Formaldehyde (40%)	R80	ND ND R	ND ND R	R ^{SO} R ^{SO} R R	ND ND R	ND	R ¹³	R ¹³	ND ND R R	R R ¹⁴ R ⁸⁰	R	R		No d No d R	ıta		No da			No da No da R R	ata ata	R ND	R ND R ⁸⁰		R R R	R R	R R ND

	N	11SCEL1	LANEOU	JS	
Concrete (s)	Glass (t)	Graphic (u)	Porcelain and Stoneware	Witerous Fairmed (ws) Wood (z)	NOTES Explanatory notes at lower temper tures may be taken to apply also at higher temperatures unless otherwishown.
20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100° 20° 60° 100°	(N)
R R R R R R R R R R R R R R R R R R R	No data R	R R R R R R R R R R R R R R R R R R R	R K K K K K K K K K K K K K K K K K K K	R R R R R R R R R R R R R R R R R R R	1 Not anhydrous 2 Depending on the acid 3 35% 4 Fair resistance 5 Not HF fumes 6 Up to 40% 7 Saturated solution 8 Pincapple and grapefruit juices 20°C 9 Photographic emulsions up to 20°C 10 10% 11 Anhydrous 12 Not Mg 13 Depending on concentration 14 Discoloration and/or swelling and soft 15 Up to 25% 16 Not chloride/not if chloride ions prese 17 Not fluorinated silicone rubbers 18 Up to 60% 19 Up to 50% 10 Not acrated solutions 21 Fluorinated silicone rubbers only 22 ND for Mg 23 5% 24 Pure only 25 Up to 30% 26 If no iron salts or free chlorine 27 May crack under stressed conditions 28 45% 29 55% 30 Depending upon composition 31 Chloride 32 20% 33 Depending on alcohol 34 Data for sodium 35 Fresh 36 Over 85% 37 Some attack at high temperature 38 Neutral 39 Attacked by fluoride ions 40 Sulphate and nitrate 41 Softening point 42 In strong solutions only when inhibited 43 Depending on water conditions 44 Dilute 45 Up to 15% 46 Not methyl 47 Drawn wire 48 Some attack, but protective coating for 49 Using anodic passivation techniques 50 Some attack/absorption/slow crosion 51 Not sulphate 52 70% 53 In absence of dissolved O ₂ and CO ₂ 54 75% 55 80% 56 May cause stress cracking 57 Pitting possible in stagmant solutions 58 In presence of H ₂ SO ₄ 59 Not ethyl
No data R R R R	R R R R R R R R R R R R R R R R R R No data	R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R	60 May discolour liquid 61 The material can cause decomposition 62 Depending on type 63 95% 64 Slight plating will occur 65 Not recommended under certain conditemperature, etc. 66 65%
No data No data R R R R ⁸⁰	R R R R R R	R R R R R R R R R R R R R R R R R	R R R R R R	R ND No data No data No data R R R R R R R R	67 Aerated solution 68 Estimated effect 69 Up to 90% 70 Not exidising conditions 71 Not lower members of series 72 Not high alumina cement concrete

- oftening
- sent

- ted

ditions of

										RI	IJB	BE	RS	5													
		Butyl Rubber and Halo-Butyl	Rubber		Ethylene Propylene	Kubber (q)		Hard Rubber	(Ebonite) (h)		Soft Natural	Rubber (h)		Neoprene (i)			Nitrile Rubber			Chlorosulphonated	Polyethylene		Polyurethane	Kubber (v)		Silicone	Rubbers (k)
	20"	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20"	60°	100°	20°	60°	100"
Pruit juices Gelatine Glycerine Glycols Hexamine Hydrazine Hydrobromic acid (50%) Hydrochloric acid (10%)	R R R R R R	R ⁸⁰ R R R R R	R R R ND ND R	R ⁶⁰ R R R R	R ⁶⁰ R R R No da ND R	R R ta ND ND R	R ⁶⁵ R R R R R	R R R R R	R R R ND	R R R R R	R R R R R	R R R R	R R R R R	R R R R R ³⁷ ND ND ND	R R R R ND ND	R R R R	R R R R No da	R R R R ⁴	R R R R	R R R R No d	R R R R R ata	R R R ND ND R ¹⁵ R	R R R ND ND ND R ₈₀ R			R R R R No da No da	
Hydrochloric acid (conc.) Hydrocyanic acid	R R R	R R	R R	R R	R ⁴ R	R ⁸⁰ R	R R	R ³⁷ R	R ³⁷ R	R R	R ⁸⁰ R	R	R R	R ⁹⁵ R	ND R	R	K		R R	R R	ND	R	R		R ³⁰	No da	
Hydrofluoric acid (75%) Hydrogen peroxide (30%) (30–90%) Hydrogen sulphide Hypochlorites Lactic acid (100%) Lend acetate Line (200)	R ⁸⁰ R R R ³⁰ R	R R ⁸⁷ R R ⁸⁰ R	R ND R R ND R	R ³⁰ R ⁸⁰ R R R	ND ND R R R	ND ND R ND ND R	R ⁸⁰ R ⁸⁷ R R ₁₃ R R	R R R	R R R	R R ₁₃ R _{14,3} R ₈₀	80 R	R	R R R R R	R R R R	ND Ř R	R R R	R ND	ND n	1	R ⁸⁷ ND R R No d		R ⁴ R R ³⁰ R ²³ R	ND R ND R ²³ R		R R R	R R No da R R R	R R R
Lime (CaO) Maleic acid Meat juices	R R R	R R R	R R R	R R R	R R R	R R R	R R R ¹³	R R R	R R R	R R R ¹³	R R R	R R R	R R R	R R R	R R R	R ND R	R R	R R	R R	R No d R	R ata R	R R R	R R R		R R R	R R R	R R R
Mercuric chloride Mercury Milk & its products Moist air Molasses Naphtha	R R R ⁸⁰ R R	R R R R	R R R R	R R R ⁸⁰ R	R R R ⁸⁰ R R	R R R	R R R R	R R R R	R R R R	R R R	R R R	R R R	R R R R	R R R R	R R R R	R R R R	R R R ND	R R R ND	R R R R R 86 R.86	R R R R	R R R	R R R R	R R R R		R R R R R	R R R R	R R R R
Naphthalene Nickel salts Nitrates of Na, K, NH ₃ Nitric acid (<25%) Nitric acid (50%)	R R R ²³	R R R ²³	R R R ²³	R R	R R	R R	R R R ¹⁰¹	R R R	R R	R R R ¹⁰¹	R R	R R	R R R	R R R	R R	R R R	R R	R R	R R R	R R R	R R	R R	R R		R ²¹ R R R R	R R R R	R R R R
Nitric acid (95%) Nitric acid, furning Oils, essential Oils, mineral	R ¹⁴	R	ND	R ^(c) R ⁸⁰	ND R ⁸⁰	ND R ⁸⁰	R ¹⁴				No da	ıta	R ¹⁴ R	ND ND	ND ND	R⁴ R	R ⁴ R	R	R R ⁸⁹ R ³⁰			R R	R R		R R ³⁰ R ³⁰	R R	R R
Oils, vegetable & animal Oxalic acid Ozone Paraffin wax Perchloric acid	R R R R	R ¹⁴ R R R	R R	R R R	R ¹⁴ No da R R	ta ND	R ⁸⁰ R R R	R R R	R R R	R ¹⁴ R ⁸⁰ R	R R R 14	R	R ¹⁴ R R R	ND R R R	ND R R R	R R R ³⁰ R	R R R	R	R [™] R R R	ND R R No d	R R	R ND R R ND	R ND R R ND			R R R R No da	
Phenol Phosphoric acid (25%) Phosphoric acid (50%) Phosphoric acid (95%) Phosphorus chlorides	R R R R	R ⁸⁰ R R R	ND R R R		R R R No da			R R R R	R ⁶⁰ R ⁶⁰ R ⁶⁰ nta		R R R No da	R ⁶⁰ R ⁶⁰ R ⁶⁰		R R R No da		R R R	R	ND	R R R	R R R	R R R		R R ND			R R R R	
Phosphorus pentoxide Phthalie acid Picric acid Pyridine Sea water	R R ¹³ R ⁸⁰ R ⁴ R	R R R	ND R R		R R ¹³ No da R		R R ⁸⁰ R	R R ⁸⁰ R ³⁰		R R R	R R. ³⁰ R	R	R R R	R R R	R R R	R R ^{1,3}	ND R	ND R	1	No d No d R R		R	ND ND ND			R R No da No da R	
Silicie acid Silicone fluids Silver nitrate Sodium carbonate Sodium peroxide	R R R R	R R R R R	R ND R R	R No R ⁶⁰ R R	R	R R ⁶⁰ R ND	R R R ⁶¹ R R ¹³	R R	R R	R R R ⁸⁰ R R ⁸⁰	R R R R R	R R R ND	R R R R	R R R R R	R R R R ND	ND R R R R	R R R	R ND R	R R R R	R R R R	R R R R	R R R	R ND R R		R R ₃₀ R R R R	R R R R	R R R R

	N	11SCELI	LANEOU	JS				
Concrete (s)	Glass (t)	Graphic (u)	Porcelain and Stoneware	Vircous Enamel (w)	Wood (2)			
20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°			
R R R No data No data	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R			
No data No data	R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R	R R ND ND ND R R R R R R R R R	R R R			
R ⁷² R R No data	R R R No data R R R	R R ³⁷ R ³⁷ R R R R R R	R R R R R R R R R	R R ND R R R R R R	R R R R			
R R R No data No data	R R R No data R R R	R R R R R R R R R	R R R R R R R R R	R R ND R R R R R R	R ¹⁴ R R R R R R			
R R R R ³⁵ R R R R R R	R R R R R R R R R R R R	R R R R R R R R R R R R	R R R R R R R R R R R R	No data R R ND R R R R R R R	R R R R R R R R R R R R R R R R R R R			
R R R R R R No data R ⁷³ R R	No data No data R R R R ND ND R R R ⁵⁰	R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R	R R R R No data R ND ND R R R	R R R R R R R R R R R			
No data R R R	R R R ⁵⁰ R R R ⁵⁰ R R R ⁸⁰ R R R R R R	R R R R R R	R R R R R R R R R R R R R R R R R R R	R R ND R R ND R ND ND R R R R R R	R R R R R R			
R R R R R R R R R	R R R R R R R R R R R R	R R R R R R R 15 R 10 R R R	R R R R R R R R R R R R	R R R No data R R R No data R R R	R No data R R R			
	R R R R R R R R R R ND ND	R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R	R R R R R R ND R R ND No data				
No data R R R R R R	R R R R R R R R R R R R	R R R R R R R R R R R R	R R R R R R R R R	R R R R R R R R R R R R R R R	R R No data R ¹⁴ R R R R R			
R ⁷⁴ R R No data R ⁷² R R R ⁷² R R	R R R R R R R R ND ND	R R R R R R R R R No data	R R R R R R	R R R R R R R R R No data	R R R			

- 73 Not ammonium
- 74 Not chlorsilanes
- 75 Data for ammonium
- 76 Data for calcium
- 77 Data for potassium
- 78 In presence of heavy metal ions 79 ND for Ba

- 80 Limited service 81 Except those containing sulphate
- 82 Provided less than 70% copper
- 83 Water less than 150 ppm 84 May cause some localised pitting
- 85 60% in one month
- 86 Low taste and odour
- 87 Catalyses decomp. of H_2O_2
- 88 65%
- 89 1-2 days 90 Wet gas
- 91 Less than 0-005% water
- 92 In absence of heavy metal ions oxidising agents
- 93 Stress corrosion in MeOH and halides (not in other alcohols)

- 94 When free of SO₂
 95 50% swell in 28 days
 96 60% swell in 3 days
 97 Could be dangerous in black loaded compounds
- 98 Not alkaline 99 Ozone 2% Oxygen 98%

- 100 This is the softening point
 101 Nitric acid less than 5% concentration
 102 Acid fumes dry, Attack might occur if moisture present and concentrated condensate built up

 103 Stainless steels not normally recommended for eaustic applications
- 104 In the absence of impurities 105 10% w/w in alcohol
- 106 Swelling with some ketones107 Some stress cracking at high pH
- (a) Aluminium: In many cases where the chart indicates that aluminium is a suitable material there is some attack, but the corrosion is slight enough to allow aluminium to be used
- economically.

 (b) Brass: Some types of brass have less corrosion resistance than is shown on the chart, others have more, e.g. Al brass.

 (c) Cast iron: This is considered to be resistant if the material
- corrodes at a rate of less than 0.25 mm per annum. When choosing east iron, Ni-Resist or high Si iron for a particular application the very different physical properties of these materials must be taken into account.
- (d) Gunmetal: The data refer only to high tin gunmetals.
- (e) Nickel-copper alloys: The physical properties are for annealed material. Both the tensile strength and hardness can vary with form and heat treatment condition.

 (f) Stainless steels: Less expensive 13% chromium steels may be
- used for some applications instead of 18/8 steels. Under certain conditions the addition of titanium increases the corrosion resistance of 18/8 steels. Also, it produces materials which can be welded without the need for subsequent heat treatment. These steels are, however, inferior in corrosion resistance to the more expensive 18/8/Mo steels.
- (g) Tin: Data refer to pure or lightly alloyed tin; not to discontinuous tin coatings.

 (h) Soft natural rubber and ebonite: Performance at higher
- temperatures depends on method of compounding.

 (i) Neoprene: Brush or spray applied 1.5 mm thick, and properly
- (k) Silicone rubbers: Withstand temperatures ranging from —90°C to above 250°C and are resistant to many oils and chemicals. In some cases particularly good resistance is shown by the fluorinated type.

	RUBBERS																										
		Butyl Rubber	Rubber		Ethylene Propylene	Rubber (q)		Hard Rubber	(Ebonite) (h)		Soft Natural	Rubber (h)		Neomene (i)			Ninie Rubber			Chlorosulphonated	Polyethylene		Polyurethane	Rubber (v)		Silicone	Rubhers (k)
	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°	20°	60°	100°
Sodium silicate Sodium sulphide Stannic chloride Starch Sugar, syrups, jams	R R R R	R R R R	R R R R	R R R R	R R R R	R R R R	R R R R	R R R R	R R R R	R R R R	R R R R	R R R R	R R R R	R R R R	R R R R	R R R R	R R R R	ND ND R R	R R R	R No di R R R	R ata R R R	R R R R	R ND R R		R R R R	R R R R	R R R R
Sulphamic acid Sulphates (Na, K, Mg, Ca) Sulphites Sulphonic acids Sulphur	R R R ¹³ R	No d R R R R	R R R	R R R R ¹³ R	R R R R ¹³	ND R R R	R ¹³ R R R R ² R	R R R R ² R	R R R ²	R R ⁸⁰ R	No d R R ⁸⁰	ata R	R R R R	ND R R R R	ND R R R	R R ND R ³⁰		ata R R R	R R R R	R R R R	R R R R	R R R R	R R R ND		R R	No d R R R No d R	R R
Sulphur dioxide, dry Sulphur dioxide, wet Sulphur trioxide Sulphuric acid (<50%) Sulphuric acid (70%)	R R R	R R	R R	R R R R ^{SO}	R R R	R R	R R R R ⁶⁶	R R R	R R ⁺	R	R		R R R	R R R	R R	R	N o di	ata	R ⁺ R R	R R R	R R	ND ND R ²⁵	ND ND R ₈₀		R R R	R R R R	ND ND R R
Sulphuric acid (95%) Sulphuric acid, fuming Sulphur chlorides Tallow	R	R R	R ⁴ R	R R	R⁴ R	ND R	R R	R R	R R	R R	R R	R	R R	R R	R R	R R	No di R R	ata R	R R R	No da R R	ata R R	R R	ND R		R ³⁴	R R	R R
Tartaric acid Trichlorethylene	R	R	R	ĸ	R	R	R	R	R	ĸ	R	R	R	R	R	R R ⁶⁵	R		R	R	R	R	R		R R ²¹	R R	R R
Vinegar Water, distilled Water, soft	R R R	R R R	R R R	R R R	R ^{I+} R R	R R	R R ³⁰ R	R R R	R R R	R ⁸⁰ R ³⁰ R	R R R	R R	R R	R R R	R R R	R R R	R ³⁷ R R	R R R	R R R	R R R	R K R	R ⁸⁰ R R	R ^{SO} R R		R R R	R R R	R R R
Water, hard Yeast Zine chloride	R R	R R R	R R R	R R	R No da R	R ata R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R R R	R ND R	R ND ND	R R R	R R R	R R R	R ND R	R ND R		R R R	R R R	R R R

	MISCELLANEOUS												
Concrete (s)	Glass (t)	Graphite (u)	Porcelain and Stoneware	Vitreous Enamel (w)	Wood (z)								
20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°	20° 60° 100°								
R R R	R R R R R R R R R R R R	R R R R R R R R R R R R	R R R R R R R R R R R R R R R	No data No data R R R R R R	R R R R R R R								
No data	R R R R R R R R R R R R	R R R R R R R R R R R R	R R R R R R R R R R R R R R R R	No data R R ND R R R R ND R R R ND	No data R R R								
No data	R R ND R R R R R R R R R R R	R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R R R R	R R R R R R R R R R R R R R R R	R ¹⁰								
No data	R R R R R R R R R No data R R R	R ² R R R R R R R R R R	R R R R R R R R R R R R R R R	R R R R ND ND R R ND R R R R R R	No data R R R R R R								
R R R	R ND ND R R R R R R R R R	R R R R R R R R R	R R R R R R R R R	R R R R R R R R R	R R R R R R R R R								
R ⁵⁰ R R R R R R R R	R R R R R R R R ND ND	R R R R R R R R R R R	R R R R R R R R R R R R	R R R R R R R R R R R ND	R R R R R R R R R								

- (1) Acrylonitrile butadiene styrene resins: The information refers to a general purpose moulding grade material.
- (m) Nylon: Prolonged heating may cause oxidation and embrittle ment. Data on nylon 66 plastics refer to Maranyl products. Other nylons, such as types 6 and 610, can behave differently, e.g. towards aqueous solutions of salts.
- (n) P.T.F.E.: Is attacked by alkali metals (molten or in solution) and by certain rare fluorinated gases at high temperatures and pressures. Some organic and halogenated solvents can cause swelling and slight dimensional changes but the effects are physical and reversible.
- (o) Melamine resins: The information refers mainly to laminates surfaced with melamine resins. Melamine coating resins are always used in conjunction with alkyd resins and the specifications will depend on the alkyd resin used.
- (p) Epoxy resins: Data are for cold curing systems.
- (q) The information given is based on compounds made from ethylene propylene terpolymer rubber.
- (r) Phenol formaldehyde resins: These are of several types and care should be taken that the right type is chosen.
- (s) Concrete: Usually made from Portland cement, but if made from Ciment Fondu or gypsum slag cement might have superior resistance in particular applications.
- (t) Glass: The information refers to heat-resistant borosilicate
- (u) Graphite: Data refer to resin-impregnated graphite. Other specially treated graphites have improved corrosion resistance to many chemicals.
- (e) Chemical resistance of polyurethanes is dependent on the particular structure of the material and is not necessarily applicable to all polyurethanes. Specially designed polyurethanes can be used at higher temperatures than 60°C but chemical resistance is temperature dependent.
- (w) Vitreous enamel: Special enamels may be required to withstand particular reagents.
- (x) Data is based on Ferralium alloy 255.
- (y) Data is based on Solef.
- (2) Wood: The behaviour of wood depends both on the species used and on the physical conditions of service. Aqueous solutions of some chemicals may cause more rapid degradation. Organic solvents may dissolve out resins, etc. Hydrogen peroxide (over 50% w/w) produces a fire risk.