
Modelado de entradas Parte II

Enrique E. Tarifa, Facultad de Ingeniería, UNJu

Modelado de entradas

Clasificación de variables

- Parámetros (P)
- Variables de entrada:
 - Manipulables (U)
 - Perturbación (D)
- Variables de salida (Y)
- Variables internas (I)
- \circ Variables de estado $(X \subseteq I)$

Cajero automático

- El usuario es el banco.
- Objetivo: Determinar cuándo se debe recargar.
- Variables tipo D:
 - Tiempo entre arribos de clientes
 - Tipo de operación
 - Monto de operación

Simulador de vuelo

- Los usuarios son los pilotos.
- Objetivo: Capacitar a los pilotos.
- Variables tipo D:
 - Cantidad de pasajeros
 - Peso de cada pasajero
 - Peso de cada equipaje

Etapas del modelado de entradas

- Colección de datos
- 2. Identificación de la distribución
- 3. Determinación de parámetros
- 4. Evaluación

Resultados

• Tabla x Colección • $f(x) \circ p(x)$ Identificación Parámetros Ajuste • Distribución Evaluación

Resultados

• Tabla x Colección • $f(x) \circ p(x)$ Identificación Parámetros Ajuste • Distribución Evaluación

Evaluación del ajuste

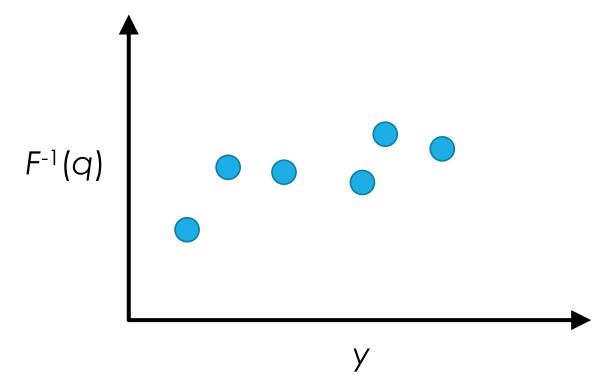
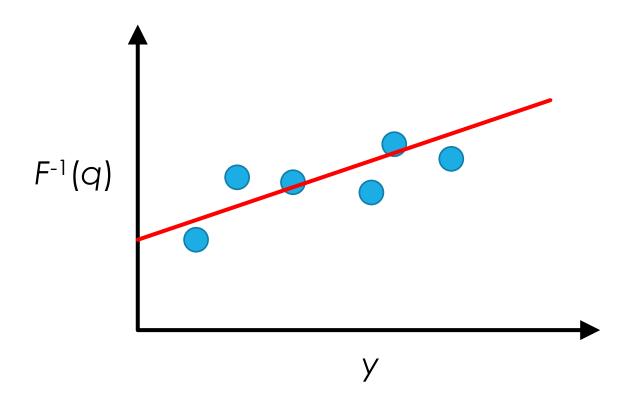
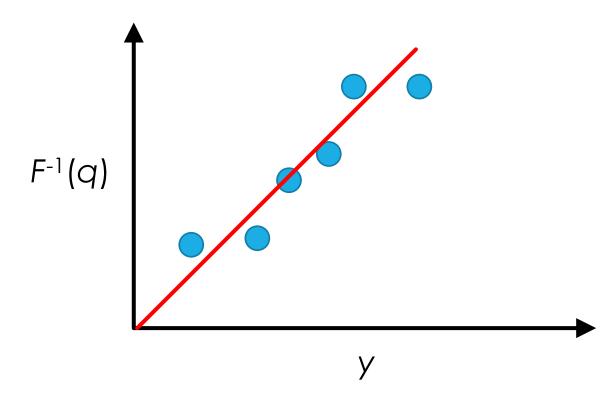

Gráfico q-q

Gráfico q-q

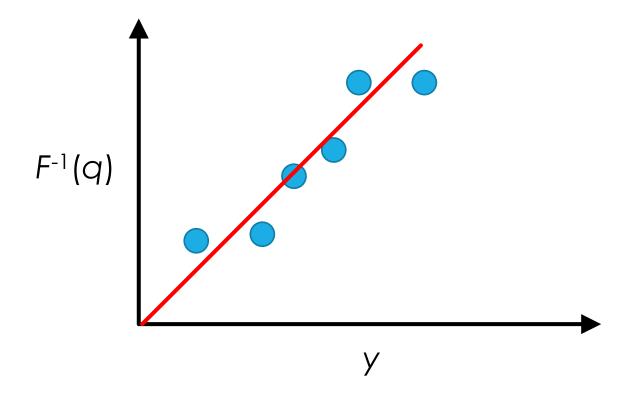
- Una alternativa al empleo de histogramas:
 - Se puede usar con pocos datos (menos de 30).
 - No depende de parámetros arbitrarios.
- El q-quantile de X es el valor γ tal que $F(\gamma) = P(X \le \gamma) = q$.
- El q-quantile de X para q = 0.5 es la mediana.
- O Cuando F(x) tiene inversa, el quantile es igual a $\gamma = F^{-1}(q)$.


Construcción del gráfico q-q

- 1. Sea x_i , i = 1, 2, ..., n.
- 2. Se ordena de menor a mayor, $y_i, j = 1, 2, ..., n$.
- 3. Sea $q_j = (j 0.5)/n$.
- 4. Se grafica $F^{-1}(q_j)$ en función de y_j .


Interpretación del gráfico q-q

 Si f(x) es de la familia de distribuciones adecuada, el gráfico F⁻¹(q) vs. y será aproximadamente una línea recta.


Interpretación del gráfico q-q

 Si, además, los parámetros de f(x) tienen los valores adecuados, la línea recta tendrá pendiente 1 y pasará por el origen.

Tolerancia

- Se tiene un 5 % de tolerancia en la pendiente:
 - **o** [0.95,1.05].
- Se tiene un 5 % de tolerancia en la distancia al origen respecto al Xm:
 - o [-0.05 Xm, 0.05 Xm].

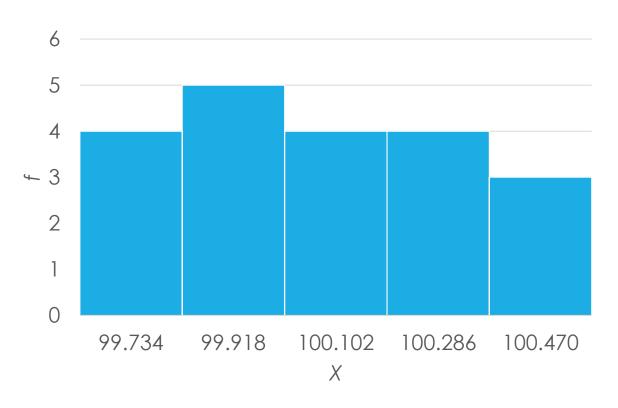


Tabla de mediciones de X

99.79	99.56	100.17	100.33
100.26	100.41	99.98	99.83
100.23	100.27	100.02	100.47
99.55	99.62	99.65	99.82
99.96	99.90	100.06	99.85

n = 20, Xm = 99.99 y $S^2 = 0.2832^2$ Gráfico q-q paso a paso. xlsx

Histograma

Se propone una distribución normal. μ = 99.99 y σ = 0.2832

Creación de la tabla del gráfico q-q

- Crear histograma.
- 2. Proponer f(x) o p(x).
- 3. Determinar parámetros.
- 4. Obtener F(x).
- 5. Obtener $F^{-1}(q)$:

1.
$$F(y) = q$$

2.
$$y = F^{-1}(q)$$

- 6. Ordenar x de menor a mayor para obtener y.
- 7. $q_i = (j-0.5)/n$

j	у	q	F ⁻¹ (q)
1	99.55	0.025	99.43
2	99.56	0.075	99.58
3	99.62	0.125	99.66
4	99.65	0.175	99.72
5	99.79	0.225	99.77
6	99.82	0.275	99.82
7	99.83	0.325	99.86
8	99.85	0.375	99.90
9	99.90	0.425	99.93
10	99.96	0.475	99.97
•••			

Tabla q-q

j	у	q	F ⁻¹ (q)
1	99.55	0.025	99.43
2	99.56	0.075	99.58
3	99.62	0.125	99.66
4	99.65	0.175	99.72
5	99.79	0.225	99.77
6	99.82	0.275	99.82
7	99.83	0.325	99.86
8	99.85	0.375	99.90
9	99.90	0.425	99.93
10	99.96	0.475	99.97
11	99.98	0.525	100.00
12	100.02	0.575	100.04
13	100.06	0.625	100.08
14	100.17	0.675	100.11
15	100.23	0.725	100.16
16	100.26	0.775	100.20
17	100.27	0.825	100.25
18	100.33	0.875	100.31
19	100.41	0.925	100.39
20	100.47	0.975	100.54

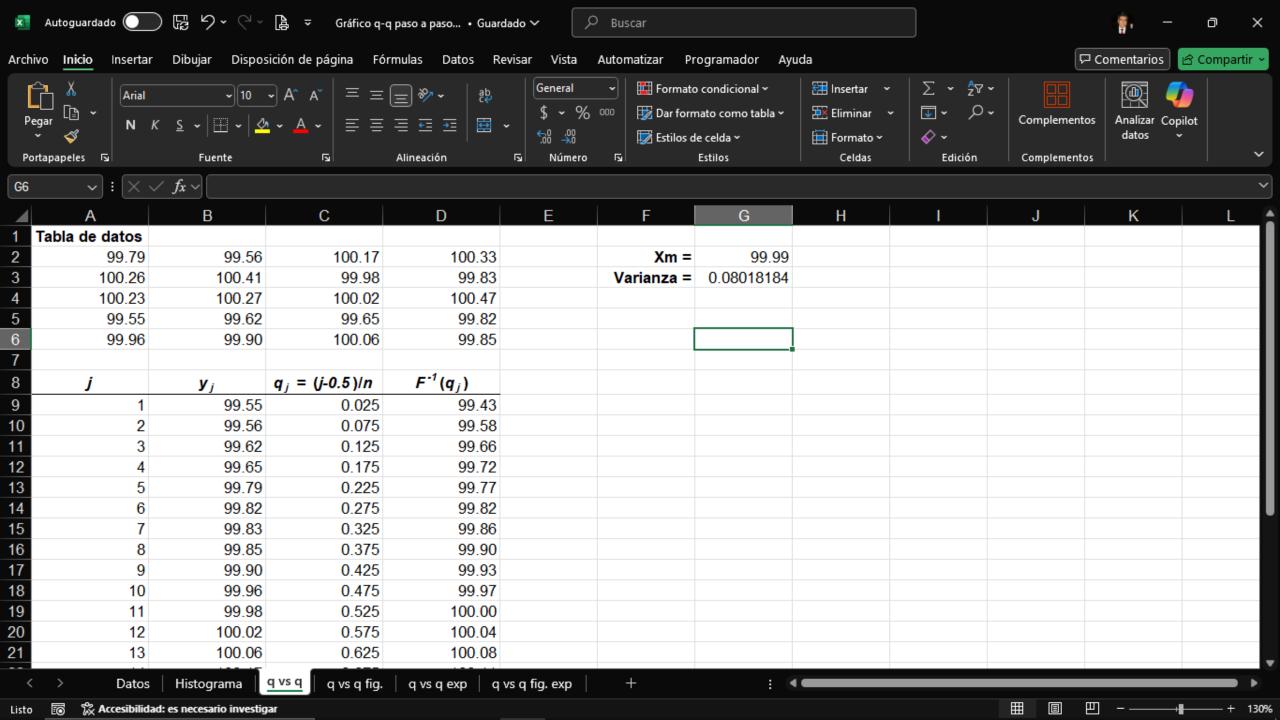
Obtención de y

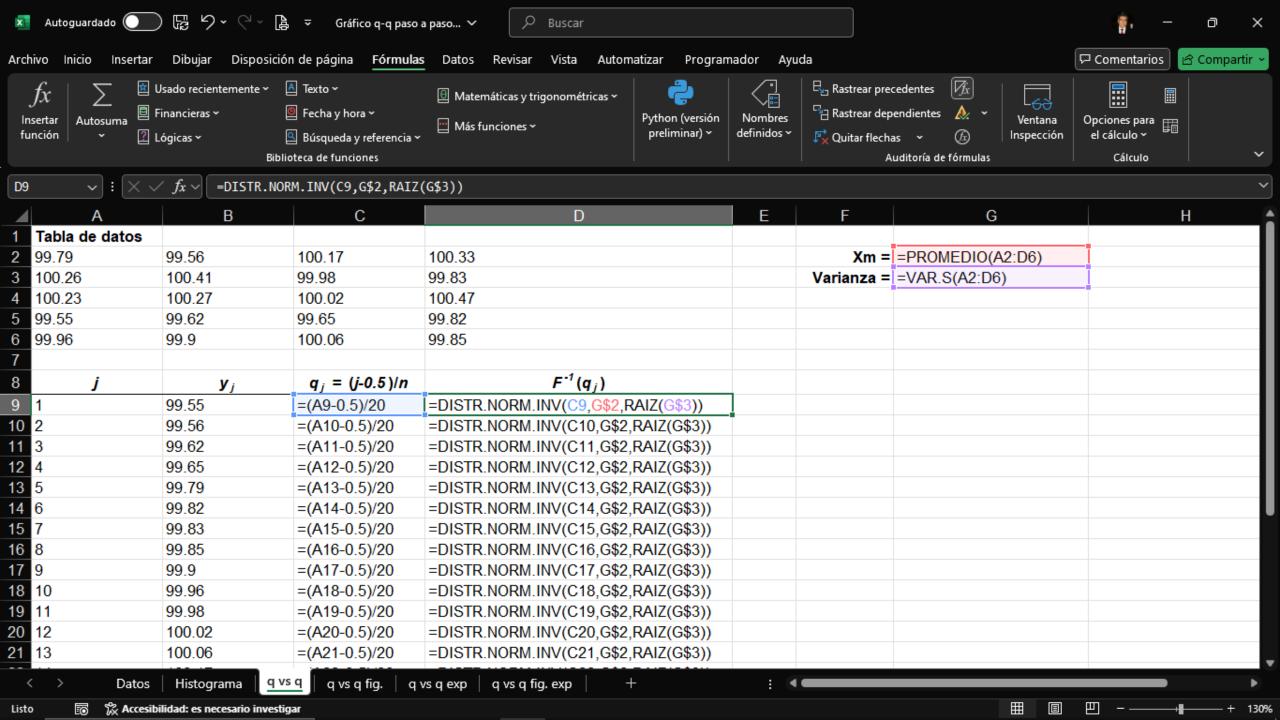
	Α	В	С	D
1	Tabla de datos			
2	99.79	99.56	100.17	100.33
3	100.26	100.41	99.98	99.83
4	100.23	100.27	100.02	100.47
5	99.55	99.62	99.65	99.82
6	99.96	99.90	100.06	99.85

Ordenar x de menor a mayor.

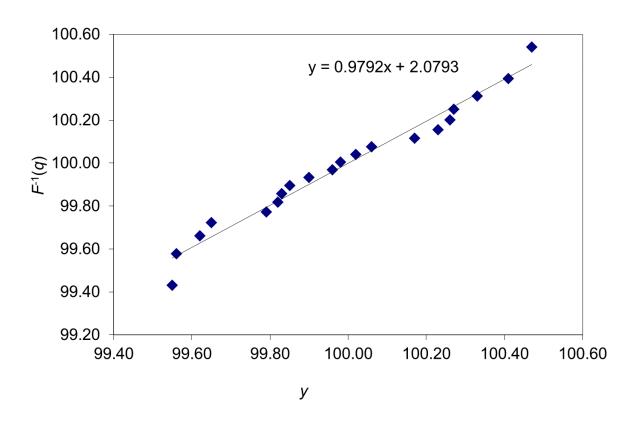
-		
8	j	\mathbf{y}_{j}
9	1	99.55
10	2	99.56
11	3	99.62
12	4	99.65
13	5	99.79
14	6	99.82
15	7	99.83
16	8	99.85
17	9	99.90
18	10	99.96
19	11	99.98
20	12	100.02
21	13	100.06
<	> Datos	Histograma
	•	

Cálculo de q


$$oq_j = (j-0.5)/n$$


8	j	y _j	$q_j = (j-0.5)/n$
9	1	99.55	0.025
10	2	99.56	0.075
11	3	99.62	0.125
12	4	99.65	0.175
13	5	99.79	0.225
14	6	99.82	0.275
15	7	99.83	0.325
16	8	99.85	0.375
17	9	99.90	0.425
18	10	99.96	0.475
19	11	99.98	0.525
20	12	100.02	0.575
21	13	100.06	0.625
<	> Datos	Histograma	q vs q fig.

Cálculo de F-1(q)


- Se evalúa la distribución normal con $\mu = 99.99$ y $\sigma = 0.2832$.
- Como no tiene inversa, se emplea:=DISTR.NORM.INV(q,μ,σ)

8		j	\mathbf{y}_{j}	$q_j = (j-0.5)/n$	$F^{-1}(q_j)$
9		1	99.55	0.025	99.43
10		2	99.56	0.075	99.58
11		3	99.62	0.125	99.66
12		4	99.65	0.175	99.72
13		5	99.79	0.225	99.77
14		6	99.82	0.275	99.82
15		7	99.83	0.325	99.86
16		8	99.85	0.375	99.90
17		9	99.90	0.425	99.93
18		10	99.96	0.475	99.97
19		11	99.98	0.525	100.00
20		12	100.02	0.575	100.04
21		13	100.06	0.625	100.08
<	>	Datos	Histograma	q vs q fig.	q vs q exp q
Listo	Listo 🐯 🔆 Accesibilidad: es necesario investigar				

Gráfico q-q

Distribución normal Gráfico q-q paso a paso.xlsx

Análisis

- y = 0.9792x + 2.0793
- Pendiente $0.9792 \in [0.95, 1.05]$.
- Distancia al origen en el intervalo 2.0793 ∈ [-0.05×99.99, 0.05×99.99]
- Se acepta la distribución.

Distribución exponencial

- o Para ver cómo da el gráfico para una distribución que no es la correcta, se prueba con una exponencial.
- $\lambda = 1/99.99$

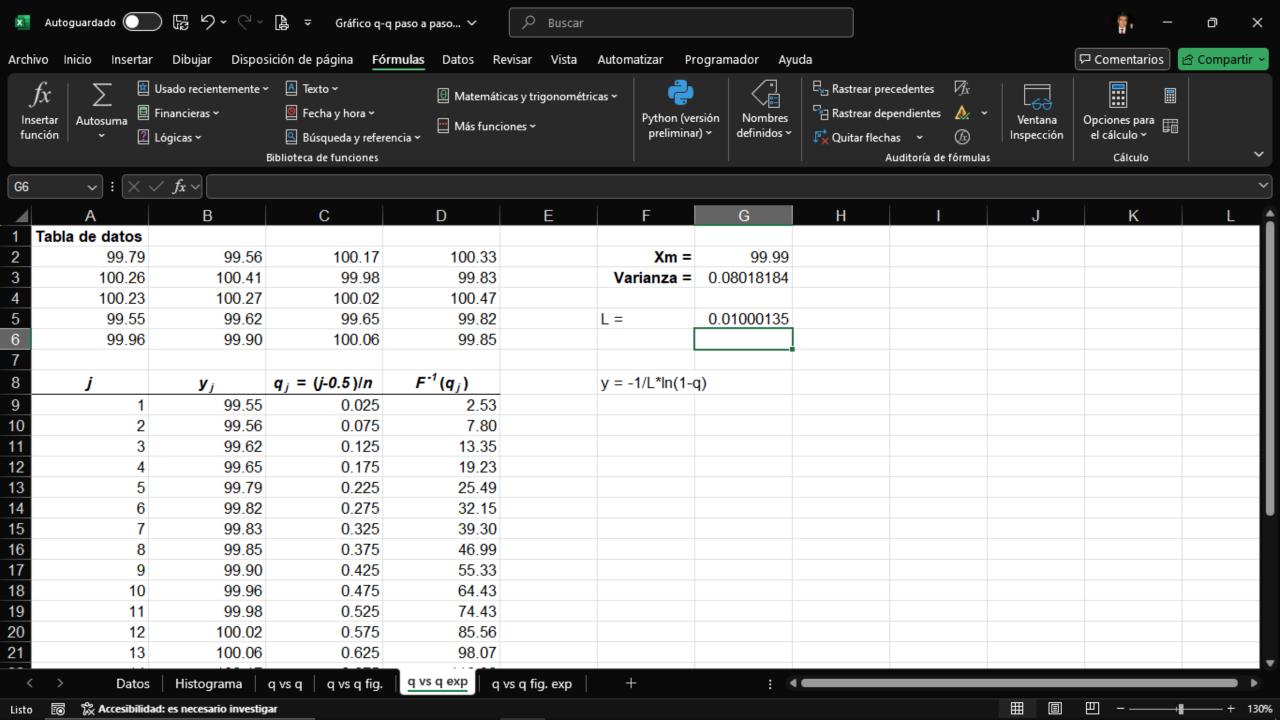
Distribución exponencial

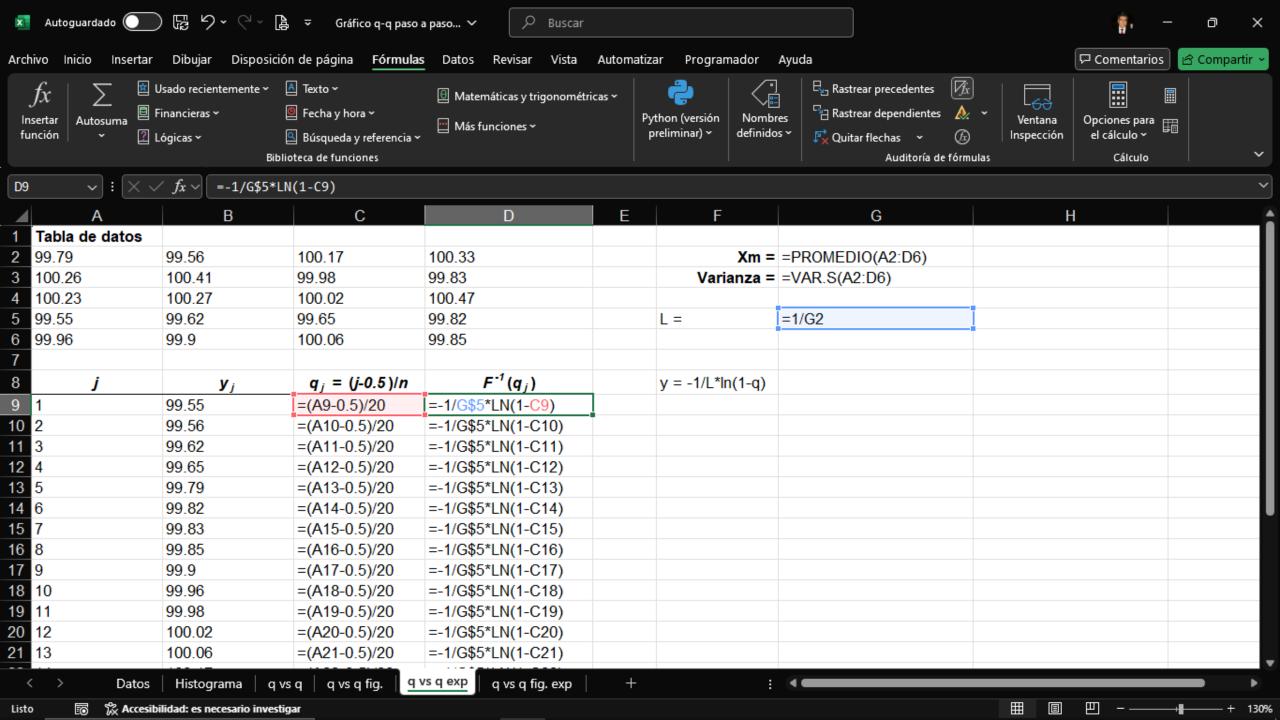
$$f(x) = \lambda e^{-\lambda x}$$

$$F(x) = 1 - e^{-\lambda x}$$

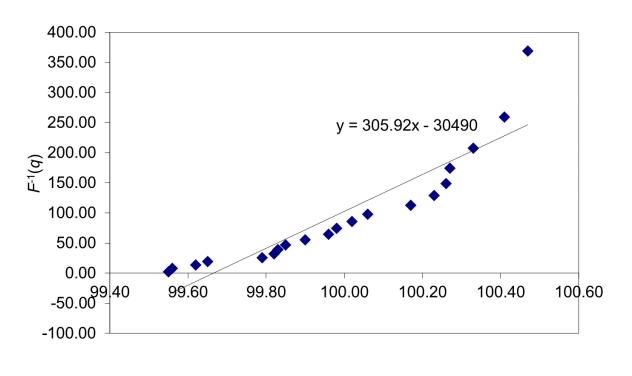
$$F(y) = 1 - e^{-\lambda y}$$

$$1 - e^{-\lambda y} = q$$


$$-e^{-\lambda y} = q - 1$$


$$e^{-\lambda y} = 1 - q$$

$$-\lambda y = \ln(1 - q)$$


$$y = -\frac{1}{\lambda} \ln \left(1 - q \right)$$

$$F^{-1}(q) = -\frac{1}{\lambda} \ln(1-q)$$

Gráfico q-q

y

Distribución exponencial

Análisis

- y = 305.92x + 30490
- Pendiente305.92 ∉ [0.95,1.05].
- Distancia al origen en el intervalo30490 ∉ [-0.05×99.99, 0.05×99.99]
- Se rechaza la distribución.