

Calculo Numérico

Ingeniería Informática, Ingeniería de Minas, Licenciatura en Sistemas

TRABAJO PRÁCTICO 3 INTERPOLACIÓN POLINOMIAL

Período Lectivo 2025

Resolver

1. Una nueva plataforma de venta on line, en la primera semana de su apertura hubo 150 usuarios que generaron ingresos por 3600 Dolares, y en la segunda semana 200 usuarios generaron ingresos por 5600 Dolares.

Se pide:

- (a) Hallar la función de interpolación que relaciona los ingresos con la cantidad de usuarios.
- (b) ¿Cuántos ingresos podrian generar 190 usuarios?
- (c) ¿Cuántos usuarios se necesitarían para generar ingresos por 7000 Dolares?
- 2. La siguiente tabla de presenta los pesos de una niña al nacer y en los siguientes meses.

Meses	0	6	12
Pesos (kg)	3.2	7.3	11.1

Hallar el polinomio de interpolación que se ajuste a los datos de la tabla y responder:

- (a) ¿Qué peso tenia a los 9 meses?
- (b) ¿Qué peso tendrá cuando tenga año y medio?
- (c) ¿Qué peso tendrá cuando tenga 5 años?
- (d) Compare y comente los resultados de los item's b) y c) con los estandares de creciminento de la OMS. https://blogdelbebe.com/calculadora-percentiles/
- 3. Hallar el polinomio interpolador de Lagrange de tercer grado para la función seno(x) con nodos en los puntos $0, \frac{\pi}{4}, \frac{3\pi}{4}, \pi$.

Se pide

- Calcular seno(1.5), $p_3(1.5)$ y representar los errores correspondientes. Comentar los resultados.
- Representar y analizar graficamente en $[0, 2\pi]$ la función seno(x) y el polinomio obtenido. Comentar lo observado.
- Calcular seno(3.5) y $p_3(3.5)$ y representar los errores correspondientes. Comentar los resultados.
- 4. Los datos de la siguiente tabla corresponden a la evolución poblacional de una ciudad Z.

Año	Población	Año	Población
1965	2.620.797	1974	3.274.043
1966	2.712.641	1975	3.228.057
1967	2.803.416	1976	3.322.460
1968	2.870.849	1977	3.355.720
1969	2.937.734	1978	3.367.438
1970	3.120.941	1979	3.368.466
1971	3.164.848	1980	3.357.903
1972	3.209.246	1981	3.158.818
1973	3.247.108	1982	3.169.628

Se pide:

- Hallar el polinomio interpolador $p_n(x)$ que se ajuste a los años 1970, 1972, 1974, 1976 y 1978.
- Usar el polinomio interpolador $p_n(x)$ para aproximar las poblaciones correspondientes a los años 1966, 1975, 1981 e interpretar los errores porcentuales.
- Representar graficamente $p_n(x)$, los datos de la tabla y comentar lo observado.
- Predecir la población esperada para el año 1985.

Consideraciones:

• Puede usar la función scilab **lagrange**() disponible en el aula virtual para resolver los ejercicios propuestos.

1