STRUNZ MINERALOGICAL TABLES

Chemical-Structural Mineral Classification System

Ninth Edition

by

Hugo Strunz and Ernest H. Nickel

with 226 figures

E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller) · Stuttgart 2001 Authors' addresses:

Dr. Hugo Strunz, Professor em. Institute of Geosciences-Mineralogy, Technical University, D-10587 Berlin, Germany Private: Abergerstraße 33a, D-83246 Unterwössen, Germany Fax: (+49) 8641 61030

Dr. Ernest H. Nickel CSIRO Exploration and Mining Floreat Park Laboratories Underwood Avenue Private Bag No. 5 Wembley WA 6913 Australia Mail: e.nickel@per.dem.csiro.au

Cover Diagram: A fragment of the crystal structure of sillénite – a framework composed of corner-sharing BiO_4 tetrahedra and flat BiO_5 pyramids.

Die Deutsche Bibliothek – CIP-Einheitsaufnahme

Strunz, Hugo and Nickel, Ernest H.: Strunz Mineralogical Tables. Chemical-Structural Mineral Classification System. / by Hugo Strunz and Ernest H. Nickel. – 9th ed. – Stuttgart, Schweizerbart, 2001 ISBN 3-510-65188-X

http://www.schweizerbart.de mail: mail@schweizerbart.de

ISBN 3-510-65188-X

All rights reserved, including translation into foreign languages. This volume or parts thereof may not be reproduced in any form without permission from the publishers.

© 2001 by E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), 70176 Stuttgart, Germany

⊗ Printed on permanent paper conforming to ISO 9706-1994

Printed by Laupp & Göbel, Satz und Druck, Talstraße 14, 72147 Nehren, Germany

Printed in Germany

Preface to the First Edition

The chemical classification of minerals, begun by Berzelius and Rose, was developed into a comprehensive crystallographic-chemical classification over a period of about 100 years, especially by Naumann, Dana, Groth and Hintze, and has been published in wellknown manuals and tables. The latest tabular summary, published by P. v. Groth and K. Mieleitner, appeared in 1921. The enormous progress in chemical crystallography since Laue's discovery (1912) requires that a fundamental revision of the current systematics should be undertaken.

It would be desirable to individually name all the authors who have provided the basics for constructing the new classification by their time-consuming X-ray and chemical investigations. However, their numbers are too large to permit this to be done in the available space; I can only point to the *Strukturbericht* of the *Zeitschrift für Kristallographie* with its numerous references and continuing editions. Special mention must be made of the authors Aminoff, W. L. Bragg, V. M. Goldschmidt, Gossner, Machatschki, Niggli, Palache, Pauling, Rinne and W. H. Taylor who, together with their co-workers, conducted outstanding mineralogical-chemical and structural studies. The names Ramdohr and Schneiderhöhn are notable for their contributions to ore microscopy.

In the course of time, incompletely investigated minerals may require reallocation in the system. Similarly, the occasional discredited mineral name may have to be revalidated. Such changes, however, will generally be restricted to the less common minerals, and those that can easily be shifted in collections. Because of the large volume of material in this volume, the occasional literature reference may be overlooked. The author would therefore appreciate all contributions from his professional colleagues and friends of mineralogy.

The development of the classification system grew from several early papers, at the invitation of the German Mineralogical Society.

Berlin, spring, 1941 H. Strunz Translated, 1999 E. H. Nickel

Preface to the Fifth Edition

Exactly 300 years ago (1669), Nicolaus Steno discovered the law of constant interfacial angles in quartz, and Erasmus Bartholinus discovered the double refraction of light in calcite; about the same time, Robert Boyle (1661) defined the concept of chemical elements by qualitative mineral analyses.

Exactly 150 years ago (1819), Eilhard Mitcherlich discovered isomorphism, and at about the same time, Jakob Berzelius (1824) was the first to propose a chemical system of minerals. In the following years this system was extended by Gustav Rose, Dana, Groth and Hintze.

About 50 years ago (1912), Max von Laue discovered X-ray diffraction by crystals; with the application of the X-ray method to the determination of crystal structures, especially by William Henry Bragg and Sir Lawrence Bragg (since 1913), the development of crystallography took a new direction, thereby making an enormous impact on science and technology.

For the "Classification of Minerals", crystal-structure determinations improved the definitions of mineral species and varieties, assisted in the development of the concept of crystal structure types, helped to establish isotypic series and homeotypic and heterotypic groups, and pointed to the recognition of much broader crystallochemical relationships. The X-ray method appreciably simplified the generally unique characterization of a mineral species and led to a reduction in varieties and the discreditation of many "minerals" accepted up to that time, thereby eliminating countless superfluous "mineral names".

The idea of developing a "classification of minerals based on crystal chemistry" evolved between 1930 and 1940. The basic concepts of this classification, established in the first edition of *Mineralogische Tabellen* (1941) are still valid today, and have been progressively refined and adapted to conform to the latest revelations of structural research. In this 5th edition, 1745 minerals have been classified in tabular form, including the international name (with original author and year of publication), chemical formula, symmetry, lattice constants and cell content, with a brief explanation of the structure type, relationships, etc. In comparison with the fourth edition, 119 new mineral species have been added to the classification, and 55 additional mineral names have been temporarily incorporated into the text. It has not been necessary to make substantial revisions, although some sections of the oxides and silicates have been thoroughly reworked. The main part of the book, namely the actual classification with footnotes citing the original publications, is based on a critical documentation of all the mineral data of structural interest from 1912 to mid-1969.

About 400 varietal names that have been in use for centuries and are still current today (e.g. amethyst, ruby, sapphire, emerald) have been included in the text. Unfortunately it was felt necessary to retain about 300 names of poorly defined or inadequately characterized minerals; it is hoped that my professional colleagues will assist in cleansing the classification by providing more complete data or by completely discrediting such minerals.

To prevent the continuing proliferation of superfluous mineral names by uncritical publication, the *International Mineralogical Association* (IMA) has created a *Commission on New Minerals and Mineral Names* which undertakes regular voting; the chairman of this Commission, Dr. Michael Fleischer, deserves our heartfelt gratitude for his admirable work.

The introduction to the classification comprises an introduction to crystal chemistry, with definitions, rules, tables of crystallochemical importance, a summary of the classification principles, and a description of structure types that are regarded as essential to an understanding of the structural principles and systematics of minerals and of structural relationships between related minerals.

Following the main part of the book is a general index which lists the recognized names of species and varieties, as well as synonyms (more than 4000 in all), and which includes some brief explanations; this is followed by a formula index.

The author is pleased to express his appreciation and gratitude to the publisher and the printing establishment for the careful manner in which five editions of a complicated book have been typeset.

Berlin, 1 January, 1970 Hugo Strunz Translated, 1999 Ernest H. Nickel

Preface to the 9th Edition

The chemical-structural mineral classification system developed since the first edition of *Mineralogische Tabellen* (1941) evolved from the chemical mineral system of Haüy (1801), which was based on cations, and of Berzelius (1814, 1824), based on anions, followed by the chemical-morphological system of Gustav Rose (1838, 1852), the periodic system of the chemical elements (cf. Introduction), and finally by the developing knowledge of atomic crystal structures (since Laue, 1912, Bragg, 1913).

The classification system used in the first, and subsequent editions of *Mineralogische Tabellen*, combines chemical features with structural principles, such as structure types, cation size and coordination numbers; minerals are generally arranged according to increasing cation size. A characteristic scheme of chemical formulae was introduced, as well as internationalized names, such as *neso-* to *tektosilicates*. International priority principles have always been acknowledged.

Since the last edition (1978), technological developments, such as improved electron microscopy (since Ernst Ruska, 1931), chemical analysis by microprobe (since Raymond Castaing, 1951), scanning electron microscopy (since Oatley & McMullan, 1952), automatic computer-controlled instrumentation and software for structure determination, have made it possible to carry out the chemical, structural, morphological and physical characterization of tiny particles of new minerals (on the scale of micrograms) within a few days or weeks; computerized structural and morphological drawings can be produced within minutes.

As a result, the number of minerals approved by the Commission on New Minerals & Mineral Names of the IMA (International Mineralogical Association) has grown from about 2500 in 1978 to about 4000 at present, with about 60 to 80 new minerals added each year.

In this edition, the world of minerals is divided by chemical features into ten classes, each of which is subdivided, on chemical-structural principles, into divisions, subdivisions, groups of isotypic and homeotypic minerals, or individual minerals with unique structure types; groups with two or more mineral names comprise minerals with similar structure or composition. The classification system and alphanumeric coding scheme used in this 9th edition of the *Strunz Mineralogical Tables* were presented at the 1994 IMA meeting in Pisa. They permit the insertion of thousands of new minerals in the future without changing the basic classification framework.

The authors gratefully acknowledge the contributions to this volume made by a number of mineralogical colleagues, particularly Emil Makovicky for helpful suggestions relating to the sulfide and sulfosalt classification, and Friedrich Liebau for constructive critical reading of the cyclo- and inosilicate portions of the manuscript. We also acknowledge the contribution made by Irmgard Stolle, Berlin, who provided assistance in the preparation of the manuscript.

This contribution to mineralogy is indebted to about seven generations of diligent and active researchers over a period of two hundred years. The authors welcome suggestions for improvements.

February 24th, 2001 Hugo Strunz Berlin

Ernest H. Nickel Perth (Wembley)

Contents

Intro Histo Chen Defir The I The C	duction prical Development nical Bonding and Crystal Structures nitions Data in the Tabulations Classication System	1 7 13 14 14
Perio	nary of System	28
1. El ca 1.A: 1 B·	LEMENTS (Metals and intermetallic alloys; metalloids and nonmetals; rbides, silicides, nitrides, phosphides) Metals and Intermetallic Alloys	33 46
1.C:	Metalloids and Nonmetals	50
1.D:	Nonmetallic Carbides and Nitrides	54
2. SU	ULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, anti- onides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.) Sulfides, etc.	
2.A:	Metal/metalloid alloys	56
2.B:	Metal Sulfides, $M:S > 1:1$ (mainly 2:1)	61
2.C:	Metal Sulfides, $M:S = 1:1$ (and similar)	75
2.D:	Metal Sulfides, $M:S = 3:4$ and $2:3$	93
2.E: 2.F:	Metal Sulfides, $M:S \le 1:2$ Sulfides of arsenic, alkalies; sulfides with halide, oxide, hydroxide, H_2O Sulfosalts	100 110
2G:	Sulfarsenites, sulfantimonites, sulfbismuthites	118
2.H:	Sulfosalts of SnS archetype	128
2.J:	Sulfosalts of PbS archetype	140
2. K :	Sulfarsenates	147
3. Н	ALIDES	
3.A:	Simple halides, without H_2O	148
3.B:	Simple halides, with H_2O	155
3.C:	Complex halides	159
3.D:	Oxyhalides, hydroxyhalides and related double halides	170
4. O	XIDES (Hydroxides, V ^[5,6] vanadates, arsenites, antimonites, bismuthites, ilfites, selenites, tellurites, iodates)	
4.A:	Metal:Oxygen = 2:1 and 1:1	182
4.B:	Metal:Oxygen = 3:4 and similar	187
4.C:	Metal: Oxygen = 2:3, 3:5, and similar	192
4.D:	Metal: Oxygen = 1:2 and similar \ldots	203

٠

4.E:	Metal:Oxygen = < 1:2		229
4.F:	Hydroxides (without V or U)		230
4.G:	Uranyl Hydroxides		248
4.H:	$V^{[5,6]}$ Vanadates		254
4.J:	Arsenites, antimonites, bismuthites, sulfites, selenites, tellurites; iodates		262
4.K:	Iodates	•	281

5. CARBONATES (+ NITRATES)

5.A:	Carbonates without additional anions, without H_2O	284
5.B:	Carbonates with additional anions, without H_2O	292
5.C:	Carbonates without additional anions, with H_2O	303
5.D:	Carbonates with additional anions, with H_2O	309
5.E:	Uranyl Carbonates	318
5.N:	NITRATES	324

6. BORATES

A: Monoborates	328
b.B: Diborates	338
b.C: Triborates	341
b.D: Tetraborates	345
b.E: Pentaborates	349
5.F: Hexaborates	354
6.G: Heptaborates and other megaborates	358
H: Unclassified borates	361

7. SULFATES (selenates, tellurates, chromates, molybdates, wolframates)

7.A:	Sulfates (selenates, etc.) without additional anions, without H_2O	363
7. B :	Sulfates (selenates, etc.) with additional anions, without H_2O	370
7.C:	Sulfates (selenates, etc.) without additional anions, with H_2O	379
7.D:	Sulfates (selenates, etc.) with additional anions, with H_2O	395
7.E:	Uranyl sulfates	413
7.F:	Chromates	415
7.G:	Molybdates and wolframates	418
7.H:	Uranium and uranyl molybdates and wolframates	422

8. PHOSPHATES, ARSENATES, VANADATES

8.A:	Phosphates, etc. without additional anions, without H_2O	424
8.B:	Phosphates, etc., with additional anions, without H_2O	439
8.C:	Phosphates without additional anions, with H_2O	470
8.D:	Phosphates, etc. with additional anions, with H_2O	491
8.E:	Uranyl phosphates and arsenates	521
8.F:	Polyphosphates, Polyarsenates, [4]-Polyvanadates	530

1

9. SI	LICATES (Germanates)	
9.A:	Nesosilicates	534
9.B:	Sorosilicates	567
9.C:	Cyclosilicates	594
9.D:	Inosilicates	617
9.E:	Phyllosilicates	657
9.F:	Tektosilicates without zeolitic H_2O	691
9.G:	Tektosilicates with zeolitic H_2O ; zeolite family	701
9.H:	Unclassified silicates	712
9.J:	Germanates	716
10. (DRGANIC COMPOUNDS	
10.A	: Salts of organic acids	717
10. B :	Hydrocarbons	722
10.C:	Miscellaneous Organic Minerals	724
Appe	endix (New minerals, structures, reclassification)	727
Alph	abetic index of mineral names	737

.

.

INTRODUCTION

1

Historical Development

René Just Haüy (1743–1822), in his well-known four-volume work *Traité de Minéralogie* (Paris, 1801), classified minerals on the type of metals they contain, or, as he would say now, on the type of cations, or the electropositive principle.

Jöns Jacob Berzelius (1779–1848), the famous Swedish chemist who introduced chemical formulae into chemistry and mineralogy, classified minerals by the type of anion, *i. e.* the electronegative principle (1814, 1824).

With this background, together with the knowledge about the seven crystal systems (Christian Samuel Weiss, 1815), the recognition of isomorphy and polymorphy (Mitscherlich, 1819, 1824), and the triad rule of chemical elements (Döbereiner, 1829), Gustav Rose (1798–1873) developed a chemical-morphological mineral system (Berlin, 1838, 1852), which looks quite modern, even today:

Class I. ELEMENTS. <u>A. Metals.</u> Cubic: copper, silver, gold, iron, platinum, iridium. – Tetragonal: tin. – Rhombohedral and Hexagonal: arsenic, antimony, bismuth, tellurium, (Os, Ir). – <u>B. Metalloids</u>. Cubic: diamond. – Hexagonal: graphite. – Orthorhombic: sulfur, iodine. – Monoclinic: sulfur, selenium. – Class II. SULFIDES. – Class III. HALIDES. – Class IV. OXIDES, divided into SIMPLE OXIDES and COMPLEX OXIDES, such as CARBONATES, PHOSPHATES, SILICATES, BORATES and SULFATES.

This mineral system was a precursor to the important discovery of the Periodic System of the chemical elements developed independently by Dmitry Mendeleev and Lothar Meyer (1869). It influenced the further development of Rose's system, especially in the famous 6th edition of the System of Mineralogy by Dana (1892). Differing from Rose, Paul Groth (1843–1927), Munich, 1912, "the world's most

Differing from Rose, Paul Groth (1843–1927), Munich, 1912, "the world's most famous authority on crystallography" (Bragg, 1933), inserted the halides between the simple and complex oxides. This was followed by three important works: Hintze *et al.*: *Handbuch der Mineralogie* (1897–1971); Palache *et al.*: *The System of Mineralogy of Dana* (7th ed., 1944, 1951); Hey: An Index of Mineral Species and Varieties, Arranged Chemically (2 eds., 1950, 1975), followed by Clark: *Hey's Mineral Index* (3rd ed., 1993). More about this, with full references, has been given in recent publications.*

The discovery of the diffraction of X-rays by the space lattices of crystals (Max von Laue, 1912), and the resulting determination of crystal structures (W. H. and W. L. Bragg, since1913), enabled many more structures to be determined within the next decade and, by about 1933, the general rules governing atomic crystal structures were recognized.

By 1941 it was therefore possible to develop, in *Mineralogische Tabellen*, an extension of the Rose classification scheme, a comprehensive mineral system based on chemistry and structure, applied systematically to the entire mineral domain. Since then, *Min*-

^{*} H. Strunz, Lapis, 1994 (1), 56–60: Klassifikation der Sulfide (in German); Lapis-Extraedition, 1993: Classification of elements, sulfides, halides (in English), distributed by mail and at the IMA General Meeting in Pisa (1994). – N. Jahrb. Min. Mh., 1996, 435–445 (general historical survey, with references). – Eur. Journ. Min., 1997, 225–232 (borates). – H. Strunz & E. H. Nickel, Zap. Vses. Min. Ob. 1997 (5), 1–14 (tektosilicates).

eralogische Tabellen have gone through many editions, reprints and translations, some with co-author Christel Tennyson.

As this 9th edition was in preparation, two important works comprising all known mineral species were published: **Dana's New Mineralogy** (Gaines *et al.*, 1997) in which the classification is the same as that used in the seventh edition of Dana's System of Mineralogy, vols. 1 and 2 (1944, 1951) by Palache *et al.*, and vol. 3 (silica minerals) by Frondel (1960), except for the silicates which follow the well-known enlarged Bragg classification. The multi-volume **Handbook of Mineralogy** by Anthony *et al.*, vol. I, Elements, Sulfides, Sulfosalts (1990); vol. II, Silica, Silicates (1995), vol. III, Halides, Hydroxides, Oxides (1997); vol. IV, Phosphates, Arsenates, Vanadates (2000); the arrangement in this series is alphabetical by mineral name, and crystal structures are not considered. Also useful is the **Glossary of Mineral Species** (founded by Fleischer, 1971 and continued by Mandarino to 8th edition, 1999).

Chemical Bonding and Crystal Structures

Atoms are the smallest chemical entities of relevance to the crystal structures of minerals. They consist of a nucleus of **protons** and **neutrons** surrounded by a cloud of **electrons** that are constrained within energy levels or "shells". Within each shell, the electrons occupy particular **orbitals** designated by the symbols *s*, *p*, *d* and *f*. The *s* orbitals are the outermost ones for all elements, and have the highest energy. They have spherical symmetry and can accommodate two electrons. The *p* orbitals consist of three mutually perpendicular dumbbell-shaped clouds that can accommodate six electrons. The *d* and *f* orbitals have more complex configurations and can accommodate ten and fourteen electrons, respectively. Only the outer orbitals are involved in bonding between atoms, and the electron configurations of these orbitals are shown in the **Periodic System of the Elements** (Table, inside cover). The symbols *s*, *p*, etc. represent the orbitals, and the *n* on s^n , p^n gives the number of electrons in that orbital. [He], [Ne], etc. represent the stable shells according to the noble gases He, Ne, etc.

Also shown in this version of the Periodic Table is the atomic number of each element, which corresponds to the total number of electrons, and the atomic weight relative to the mass of C^{12} which has been assigned a mass of 12.000 (the atomic weight of carbon shown in the Periodic Table is slightly higher than this because of the additional presence of a small amount of the C^{13} isotope in natural carbon). The atomic weight represents the sum of the numbers of protons and neutrons in the nucleus of the atom. It has long been known that the elements in a vertical column have similar chemical properties because they have the same number of valence electrons. However, the lanthanides and actinides (except for thorium) shown at the bottom of the Table do not fit readily into this scheme because of the effect of f orbitals in the outer electron shells.

The electrons of adjoining atoms in a crystal structure interact in several different ways to form chemical bonds, generally classified into ionic, covalent and metallic types, although combinations of these idealized types commonly occur. In ionic bonding, the outer electron(s) are transferred from an electropositive atom (resulting in a positively charged ion) to an electronegative atom (resulting in a negatively charged ion). The resulting ions, respectively termed cations and anions, are attracted to each other by electrostatic forces. The size of an ion depends to a first approximation on the atomic number, and secondarily on the number of electrons in the outer shell. The ionic radii of all the chemical elements is illustrated in the diagram on the inside back cover. In the classification scheme used in this book, the minerals within a group are arranged primarily according to increasing atomic number of the principal cations in the mineral, but those containing Mg^{2+} , Fe^{2+} and Mn^{2+} are arranged according to increasing ionic size, 0.72, 0.78, 0.83Å.

In **covalent bonding**, the orbitals of adjoining atoms interact. During this process, the orbitals are hybridized, and the immediate neighbourhood of the ion is strongly influenced by the electron configuration of this hybridization, resulting in strongly directional bonding. For example, one s and three p orbitals are commonly hybridized (sp^3) into the shape of a tetrahedron, as in Si^[4]. Another common polyhedral configuration in mineral structures is the octahedron, formed by the hybridization of one s, three p and two d orbitals, generally written as d^2sp^3 . Examples of the main polyhedral configurations found in minerals are shown in Figure 3.

In **metallic bonding**, the outermost electrons of the atoms are delocalized, and can move about freely within the array of cations. Metals are characterized by their metallic luster, caused by the interaction of light with the electrons, and by good electrical conductivity because of the mobility of electrons within the structure.

Fig 1. Unit cell settings of a monoclinic crystal with centered Bravais lattice: Setting 1 = C-centred; setting 2 = A-centred; setting 3 = I-centred. Projection on (010), the b-axis is normal to the plane of the drawing; the cell edges and full lines are at height b = 0; the stars are at height $b = \frac{1}{2}$.

The bonding between atoms creates three-dimensional crystal structures. These structures can be categorized by their inherent symmetry elements which have been formalized into 230 crystallographic **space groups** (Table 1). The relationship between the different settings of a monoclinic unit cell is illustrated in Fig. 1. The space groups can be derived by combining the 14 **translation types** (Fig. 2) of Bravais (1850) with all possible symmetry operations (Table 2). The relationship between space groups and **crystal classes** is shown in Table 3.

Table 1. Crystal Systems (names), Crystal Classes (symbols), Space Groups (numbers; short symbols for standard and other settings)

Triclinic				
Class	No.	Symbol		
1	1	P1		
Ī	2	ΡĪ		

Normal setting of triclinic minerals: 1) Three shortest lattice
parameters; 2) c[001] = axis of the main morphological zone;
3) α and β obtuse, γ acute; and 4) $a < b$.

Monoclinic		Setting		
Class	No.	a ₁ b c ₁ c ₁ -b a ₁	a ₂ b c ₂ c ₂ -b a ₂	a ₃ b c ₃ c ₃ -b a ₃
2	3 4 5	P2 P2 ₁ C2	A2	12
m	6 7 8 9	Pm Pc Cm Cc Aa	Pn Am An Cn	Pa Im Ia Ic
2/m	10 11 12 13 14 15	P2/m P2 ₁ /m C2/m P2/c P2 ₁ /c C2/c A2/a	A2/m P2/n P2 ₁ /n A2/n C2/n	I2/m P2/a P2₁/a I2/a I2/c

Setting of monoclinic crystals: 1) a:b:c always with b as unique axis, β obtuse, in structure and morphology; 2) three shortest lattice parameters; 3) three choices of settings a1 b c1, a2 b c2 and **a**₃ **b c**₃ apply to both P and C Bravais lattices (P = uncentred unit cell; C = C-centred unit cell, demonstrated in Fig. 1 for a centred unit cell); a1 and c₁, etc. can be exchanged, with -b; 4) the symmetry elements and their orientation in the chosen unit cell are derived from the "extinction conditions", and are expressed by the space group symbol. For further details see International Tables for Crystallography (Theo Hahn, ed.) Vol. A, 4th ed., 1996, and Brief Teaching Edition of Vol. A (Theo Hahn, ed.), 4th revised and enlarged edition, 1996, both published by The International Union of Crystallography. In the monoclinic system, for five space groups (nos. 3, 4, 6, 10 and 11), each setting choice gives the same space group symbol; for two space groups (nos. 9 and 15), six symbols; and for the others, three. The symbol in the first lines and first columns of the tabulations are the "standard short symbols", with the "standard settings", e.g., for no. 5: C2, for no. 7: Pc, etc.

Orthorhombic					
Class	No.	abc a-cb	cab ba-c	bca -cba	
222	16 17 18 19 20 21 22 23 24	P222 P2221 P21212 P212121 C2221 C222 F222 I222 I222 I212121	P2122 P22121 A2122 A222	P22 ₁ 2 P2 ₁ 22 ₁ B22 ₁ 2 B222	
mm2	25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 41 42 43 44 45 46	Pmm2 Pmc2 ₁ Pm2 ₁ b Pcc2 Pm2a Pc21 Pm2a Pc21 Pm2a Pc21 Pm21 Pm21 Pm21 Pm21 Pm21 Pm21 Pm21 Pm	P2mm P2 $_1$ ma Pcm2 $_1$ P2aa P2mb Pbm2 P2 $_1$ ab Pbc2 $_1$ P2na Pcn2 P2 $_1$ mn Pnm2 $_1$ P2cb P2 $_1$ nb Pbn2 $_1$ P2nn A2mm A2mm A2mm A2mm A2mm Bmm2 B2cm Bmm2 B2cb Bbm2 B2cb Bbm2 B2cb Bbm2 F2mm F2dd I2mb Ibm2	$\begin{array}{c} Pm2m\\ Pb2_1m\\ P2_1am\\ P2_2m\\ P2cm\\ P2cm\\ P2cm\\ P2cm\\ P2r\\ P2n\\ \mathsf$	

Setting of orthorhombic crystals: 1) three shortest lattice parameters, with a:b:c in agreement with morphology; 2) six choices of settings, a b c (first line, first column, standard setting), c a b (first line, second column), etc.; transformation **a b c** \rightarrow **c a b** means that the new a-axis corresponds to the old c, the new **b** is the old **a**, and the new **c** is the old b, etc., and vice versa; 4) if, for example, for a chosen unit cell, the "extinction conditions" give a space group symbol C2mm, the transformation -c b $\mathbf{a} \rightarrow \mathbf{a} \mathbf{b} \mathbf{c}$ gives the standard space group symbol Amm2 (no. 38). Further details are given in the International Tables for Crystallography, Vol. A (1983, 1996).

In the orthorhombic system, for ten space groups (Nos. 16, 19, 22, etc.), each setting gives the same space group symbol; for two space groups, (Nos. 61, 73) two symbols, for the others three or six.

Orthorhombic (continued)					
Class	No.	abc a-cb	cab ba-c	bca -cba	
mmm	47	Pmmm			
	48	Pnnn			
	49	Pccm	Pmaa	Pbmb	
	50	Pban	Pncb	Pcna	
	51	Pmma	Pbmm	Pmcm	
		Pmam	Pmmb	Pcmm	
	52	Pnna	Pbnn	Pncn	
		Pnan	Pnnb	Pcnn	
	53	Pmna	Pbmn	Pncm	
		Pman	Pnmb	Pcnm	
	54	Pcca	Pbaa	Pbcb	
		Pbab	Pccb	Pcaa	
	55	Pbam	Pmcb	Pcma	
	56	Pccn	Pnaa	Pbnb	
	57	Pbcm	Pmca	Pbma	
		Pcmb	Pcam	Pmab	
	58	Pnnm	Pmnn	Pnmn	
	59	Pmmn	Pnmm	Pmnm	
	60	Pbcn	Pnca	Pbna	
		Pcnb	Pcan	Pnab	
	61	Pbca			
		Pcab			
	62	Pnma	Pbnm	Pmcn	
		Pnam	Pmnb	Pcmn	
	63	Cmcm	Amma	Bbmm	
		Bmmb	Ccmm	Amam	
	64	Cmca	Abma	Bbcm	
		Bmab	Ccmb	Acam	
,	65	Cmmm	Ammm	Bmmm	
	66	Cccm	Amaa	Bbmb	
	67	Cmma	Abmm	Bmcm	
		Bmam	Cmmb	Acmm	
	68	Ccca	Abaa	Bbcb	
		Bbab	Cccb	Acaa	
	69	Fmmm			
	70	Fddd			
	71	Immm			
	72	Ibàm	Imcb	Icma	
	73	lbca			
		Icab			
	74	Imma	Ibmm	Imcm	
•		Imam	ļmmb	Icmm	
)	l			

Setting of orthorhombic crystals: continued

Tetragonal			
Class	No.	Symbol	
4	75 76 77 78 79 80	P4 P4 ₁ P4 ₂ P4 ₃ I4 I4 ₁	
4	81 82	P4 !4	
4/m	83 84 85 86 87 88	P4/m P4 ₂ /m P4/n P4 ₂ /n I4/m I4 ₁ /a	
422	89 90 91 92 93 94 95 96 97 98	P422 P42 ₁ 2 P4 ₁ 22 P4 ₁ 22 P4 ₂ 22 P4 ₂ 22 P4 ₂ 212 P4 ₃ 22 P4 ₃ 22 I422 I4 ₁ 22	
4mm	99 100 101 102 103 104 105 106 107 108 109 110	P4mm P4bm P4 $_2$ cm P4 $_2$ nm P4cc P4nc P4 $_2$ mc P4 $_2$ mc P4 $_2$ bc I4mm I4cm I4cm I4 $_1$ md I4 $_1$ cd	

Tetragonal (continued)				
Class	No.	Symbol		
42m	111 112 113 114 115 116 117 118 119 120 121 122	P42m P42c P42₁m P42₁c P4m2 P4c2 P4b2 P4b2 P4n2 I4m2 I4c2 I4c2 I42m I42d		
4/mmm	123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	P4/mmm P4/mcc P4/nbm P4/nnc P4/mbm P4/mc P4/mmm P4/ncc P4 $_2$ /mmc P4 $_2$ /mcm P4 $_2$ /mbc P4 $_2$ /nbc P4 $_2$ /nbc		

Trigonal		
Class	No.	Symbol
3	143 144 145 146	P3 P3 ₁ P3 ₂ R3
3	147 148	P3 R3
32	149 150 151 152 153 154 155	P312 P321 P3 ₁ 12 P3 ₁ 21 P3 ₂ 12 P3 ₂ 21 R32
3m	156 157 158 159 160 161	P3m1 P31m P3c1 P31c R3m R3c
3m	162 163 164 165 166 167	P31m P31c P3m1 P3c1 R3m R3c

Hexagonal			
Class	No.	Symbol	
6	168 169 170 171 172 173	$\begin{array}{c} P6 \\ P6_1 \\ P6_5 \\ P6_2 \\ P6_4 \\ P6_3 \end{array}$	
ē	174	Pē	
6/m	175 176	P6/m P6 ₃ /m	
622	177 178 179 180 181 182	P622 P6 ₁ 22 P6 ₅ 22 P6 ₂ 22 P6 ₄ 22 P6 ₃ 22	
6mm	183 184 185 186	P6mm P6cc P6 ₃ cm P6 ₃ mc	
ēm2	187 188 189 190	P6m2 P6c2 P62m P62c	
6/mmm	191 192 193 194	P6/mmm P6/mcc P6 ₃ /mcm P6 ₃ /mmc	

Cubic		
Class	No.	Symbol
23	195 196 197 198 199	P23 F23 I23 P2 ₁ 3 I2 ₁ 3
m3	200 201 202 203 204 205 206	Pm3 Pn3 Fm3 Fd3 Im3 Pa3 Ia3
432	207 208 209 210 211 212 213 214	P432 P4 ₂ 32 F432 F4 ₁ 32 I432 P4 ₃ 32 P4 ₁ 32 I4 ₁ 32
43m	215 216 217 218 219 220	P43m F43m I43m P43n F43c I43d
m3m	221 222 223 224 225 226 227 228 229 230	Pm3m Pn3n Pm3n Pn3m Fm3c Fd3m Fd3c Im3m Ia3d

,

.

Fig 2. The 14 three-dimensional translation lattice types (Bravais, 1850). P = primitive; C = c-face centred, F = all face centred, R = rhombohedral (crystals in the 7 rhombohedral space groups are described in relation to hexagonal axes).

Table 2. Symmetry Operations

Possible symmetry operations which, in combination with the 14 translation lattices, give the 230 space groups. For example, space group no. 62: Pbnm means P = primitive translation lattice; b = axial glide plane // (100) with glide vector b/2; n = diagonal glide plane // (010) with diagonal glide vector a/2 + c/2; m = mirror plane // (001) (see chrysoberyl, triphylite, olivine).

Rotation Axes	Screw Axes	Inversion Axes
1 2 3 4 6	$-2_13_1, 3_24_1, 4_2, 4_36_1, 6_2, 6_3, 6_4, 6_5$	$\overline{1} \equiv i$ $\overline{2} \equiv m$ $\overline{3} \equiv 3 + i$ $\overline{4}$ $\overline{6} \equiv 3/m$

Symmetry Planes	Symbol	Glide Vector
Mirror Plane	m	0
Axial Glide Planes	a b c	a/2 b/2 c/2
Diagonal Glide Planes	n	a/2 + b/2 or a/2 + c/2 or b/2 + c/2
Diamond Glide Plane	d	a/4 + b/4 + c/4

Table 3. Crystal Systems, Classes, Space Groups

Crystal	Crystal Class		Laue	Range of Space Groups	
System	Names	Sym- bols*	Ciass	Nos.	Symbols
Triclinic	Triclinic-pedial (asymmetric) Triclinic-pinacoidal	1 1	- +	1 2	P1 P1
Monoclinic	Monoclinic-sphenoidal Monoclinic-domatic Monoclinic-prismatic	2 m 2/m	- +	3–5 6–9 10–15	P2 – C2 Pm – Cc P2/m – C2/c
Orthorhombic	Orthorhombic-disphenoidal Orthorhombic-pyramidal Orthorhombic-dipyramidal	222 mm2 mmm	- - +	16–24 25–46 47–74	P222 – I212121 Pmm2 – Ima2 Pmmm – Imma

Table 3. Continued

Crystal	Crystal Class		Laue	Range of	Range of Space Groups	
System	Names	Sym- bols*	Cidos	Nos.	Symbols	
Tetragonal	Tetragonal-pyramidal	4	-	75- 80	P4 - 14 ₁	
	Tetragonal-disphenoidal	4	-	81- 82	P4 - 14	
	Tetragonal-dipyramidal	4/m	+	83- 88	P4/m - 14 ₁ /a	
	Tetragonal-trapezohedral Ditetragonal-pyramidal Tetragonal-scalenohedral Ditetragonal-dipyramidal	422 4mm 42m 4/mmm	- - +·	89-98 99-110 111-122 123-142	P422 – 14,22 P4mm – 14,cd P42m – 142d P4/mmm – 141/acd	
Trigonal	Trigonal-pyramidal	3	-	143–146	P3 - R3	
	Trigonal-rhombohedral	3	+	147–148	P3 - R3	
	Trigonal-trapezohedral	32	-	149–155	P312 – R32	
	Ditrigonal-pyramidal	3m	-	156–161	P3m1 – R3c	
	Trigonal-scalenohedral	3m	+	162–167	P31m – R3c	
Hexagonal	Hexagonal-pyramidal	6	-	168–1 73	P6 – P6 ₃	
	Trigonal-dipyramidal	6	-	174	P 6	
	Hexagonal-dipyramidal	6/m	+	175–1 76	P6/m – P6 ₃ /m	
	Hexagonal-trapezohedral Dihexagonal-pyramidal Ditrigonal-dipyramidal Dihexagonal-dipyramidal	622 6mm 6m2 6/mmm	- - +	177–182 183–186 187–190 191–194	P622 - P6 ₃ 22 P6mm - P6 ₃ mc P6m2 - P62c P6/mmm - P6 ₃ /mmc	
Cubic	Cubic-tetartoidal	23		195–199	P23 - I2₁3	
	Cubic-disdodecahedral	m3	+	200–206	Pm3 - Ia3	
	Cubic-gyroidal	432	-	207–214	P432 – I4 ₁ 32	
	Cubic-hex'tetrahedral	43m	-	215–220	P43m – I43d	
	Cubic-hex'octahedral	m3m	+	221–230	Pm3m – Ia3d	

* The class symbols can be derived from the space group symbols by deleting the Bravais symbols (P, C, etc.), dropping all subscripts from screw axes $(2_1, 3_1, 4_1, \text{etc.} \rightarrow 2, 3, 4, \text{etc.})$ and replacing all glide plane symbols by the mirror plane symbol, m. Thus I4₁/acd becomes 4/mmm. A slash means perpendicularity of a rotational element and a reflection element.

** The 11 Laue Classes, indicated by +, summarize the preceding classes by introducing an inversion center. Inversion center: - no, + yes.

Crystal systems and crystal axes: C.S. Weiss (1815).

Crystal classes: J. F. C. Hessel (1830); Class names: P. v. Groth (1905), modified in *Min. Tab.* (1941). Space groups: E. S. v. Fedorov (1891); A. M. Schoenflies (1891). Laue classes: M. v. Laue (1912); Friedel's Law (1913).

Class and space groups (short) symbols: C. Hermann & C. Mauguin (1935), standard settings. Symbols according to *International Tables for Crystallography* (1996).

je.

Definitions

Crystals. Crystals are solids with a three-dimensional lattice arrangement of atoms, ions or molecules. Ideas about this were independently expressed by Johannes Kepler (1611) in a paper on hexagonal snow crystals, by Christiaan Huygens (1690) in his fundamental work on the wave theory of optics, wherein he ascribed to calcite a structure made up of ellipsoidal particles, by Torbern Olof Bergman (1773), and especially by René Just Haüy (1782) who suggested that all crystals consist of a three-dimensional masonry of equal parallelepipedal building bricks, the "molécules intégrantes" which have the form of tiny cleavage rhombohedra in calcite, and which express the laws governing the symmetry of crystals.

Ludwig August Seeber, a physicist in Freiburg, in his "Erklärung des Baues fester Körper" (1824), in an attempt to find an explanation for the thermal expansion and elasticity of crystals, arrived at a parallelepipedal arrangement, formed by the balance of temperature-dependent attractive and repulsive forces of indivisible parts of matter, thus forming a theory of stable equilibrium in crystals. Max von Laue said that such an arrangement implies a primitive translation lattice (Historical Introduction: *International Tables for X-ray Crystallography*, 1952).

Minerals. A mineral substance is generally regarded as a naturally occurring solid that has been formed by geochemical or geophysical processes, either on earth or in extraterrestrial bodies. Most minerals occur as crystals, and frequently have an external morphology that is a function of the internal arrangement of atoms comprising the crystal.

A mineral species is a mineral substance with well-defined chemical composition and crystallographic properties, and which merits a unique name.

Isotypy. Isotypic substances are those that have the same crystallographic space group and analogous chemical formulae and crystal structures. The terms "isostructural" and "isomorphic" are essentially synonymous with "isotypic".

Homeotypy. Homeotypic substances are those that have similar crystal structures, but with different crystallographic space groups and/or chemical compositions.

Heterotypy. Heterotypic substances are chemically related, but have different chemical compositions and structures.

Polymorphism. Polymorphs are substances with essentially identical compositions, but with different crystal structures.

Polytypism. Polytypes are substances that occur in different structural modifications, each of which can be regarded as being built up by the stacking of layers of (nearly) identical structure and composition, and with the modifications differing only in their stacking sequence.

Diadochy. This refers to the substitution of a chemical element by another one in a crystal lattice, leaving the basic structure unchanged, except for relatively minor variations in the unit-cell parameters. If the substitution occurs over a wide compositional range, such a range is commonly referred to as an isomorphous series or a solid-solution series.

Coupled Replacement. This occurs when two or more chemical elements with different valencies are replaced by other chemical elements that maintain electrostatic neutrality in the crystal. **Coordination**. The number of anions surrounding the specified cation in a crystal structure is referred to as the coordination number, and is shown as a numerical digit in square brackets, e. g. [6]; in a chemical formula this symbol is shown as a superscript immediately following the element symbol. The configuration of the coordinating ions is commonly referred to in terms of a polyhedral form; the more common of which are shown in Fig. 3.

The Data in the Tabulations

Each mineral group (or sometimes single mineral) is given an alphanumeric coding, which is explained below in "The Classification System". When the crystal structure is known, a brief description is given, sometimes accompanied by an illustration. Within a group, each mineral is listed by name, chemical formula, space group designation (and number), the author(s) of the original description, crystallographic parameters and unit-cell contents (Z). One or more references relating to the data are given, with the structural reference(s) indicated by a following "(str)".

The chemical formulae are generally end-member formulae, but major substitutions are commonly indicated within round brackets, in decreasing order of abundance. In the first edition of *Mineralogische Tabellen* (1941), a method of writing chemical formulae was introduced whereby subsidiary anions (F,O,OH) were positioned before the complex anions, with both enclosed in square brackets, e. g. *fluorapatite* $Ca_5[F|(PO_4)_3]$, *euchroite* $Cu_2[OH|AsO_4] \cdot 3H_2O$. This procedure was adopted for reasons of specified bonding strength, as all valence electrons of the subsidiary anions are used in bonding to the cations, whereas only a fraction of the valency electrons of the oxygens of the complex ions are involved in bonding to the cations.

Space groups and unit-cell parameters are generally as taken from the published literature, but some have been transformed into alternative settings to maintain consistency within a group or to conform with traditional morphological descriptions.

The Classification System

In this first English edition of *Mineralogical Tables*, the world of minerals is divided by chemical features into 10 Classes which are subdivided on chemical-structural principles, into Divisions, Subdivisions and Groups of isotypic or homeotypic species, or individual minerals of a unique structure type. Groups with a heading containing more than one mineral name include two or more heterotypes of usually unknown structures. Related groups may be designated a Family.

Because of the great diversity of bonding types exhibited by minerals, a variety of criteria has been used to classify minerals within a Class. Some minerals, like the borates and silicates, can be classified mainly on the basis of crystal structure, *ie* the degree of polymerization of the anionic polyhedra. Other minerals, such as the sulfides and oxides,

Fig 3. The more common coordination polyhedra. The black circle represents the central cation; the white circles represent the coordinating anions; cation-anion bonds are shown as solid lines, and polyhedral forms as dashed lines.

can be conveniently grouped according to cation: anion ratio. Still others, such as halides, carbonates, sulfates and phosphates, are classified primarily on the presence or absence of OH and H_2O . The principal motive underlying the classification scheme is to provide a convenient framework to which all minerals can be readily allocated.

An alphanumeric coding scheme, from 1.AA.05 to 1.AA.10 ..., etc., encompasses groups rather than individual minerals (as done by Hölzel, 1989). In this scheme, the first numeric digit represents a Class, the first alphabetic character represents a Division, and the second alphabetic character represents a Subdivision. The final two numeric digits represent a Group or individual mineral. In future, new minerals, isotypic or homeotypic with those of known structures can be inserted into an existing group; new minerals with a new structure type can be inserted into the gaps between existing group numbers.

It is hoped that the small number of classes, the logical classification principles, the specific rendition of chemical formulae, and the alphanumeric coding scheme make it relatively easy for scientists and friends of mineralogy to keep the entire system in mind.

Summary of System

1. ELEMENTS (Metals and intermetallic alloys; metalloids and nonmetals; carbides, silicides, nitrides, phosphides)

1.A: Metals and Intermetallic Alloys

1.AA. Copper-cupalite family

1.AB. Zinc-brass family

1.AC. Indium-tin family

1.AD. Mercury-amalgam family

1.AE. Iron-chromium family

1.AF. Platinum group elements

1.AG. PGE-metal alloys

1.B: Metallic Carbides, Silicides, Nitrides and Phosphides

- 1.BA. Carbides
- 1.BB. Silicides
- 1.BC. Nitrides
- 1.BD. Phosphides

1.C: Metalloids and Nonmetals

1.CA. Arsenic group elements

- 1.CB. Carbon-silicon family
- 1.CC. Sulfur-selenium-iodine

1.D: Nonmetallic Carbides and Nitrides

1.DA. Nonmetallic carbides

1.DB. Nonmetallic nitrides

2. SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)

Sulfides, etc.

2.A: Metal/metalloid alloys

2.AA. Alloys of metalloids with Cu, Ag, Au 2.AB. Ni-metalloid alloys 2.AC. Alloys of metalloids with PGE 2.B: Metal Sulfides, M:S > 1:1 (mainly 2:1) 2.BA. With Cu, Ag, Au 2.BB. With Ni 2.BC. With Rh, Pd, Pt, etc. 2.BD. With Hg, Tl 2.BE. With Pb (Bi) 2.C: Metal Sulfides, M:S = 1:1 (and similar) 2.CA. With Cu 2.CB. With Zn, Fe, Cu, Ag, etc. 2.CC. With Ni, Fe, Co, etc. 2.CD. With Sn, Pb, Hg, etc. 2.D: Metal Sulfides, M:S = 3:4 and 2:3 2.DA. M:S = 3:42.DB. M:S = 2:3 2.DC. Variable M:S 2.E: Metal Sulfides, $M:S \le 1:2$ 2.EA. M:S = 1:2, with Cu, Ag, Au; Ni, Sn, PGE; Mo, W 2.EB. M:S = 1:2, with Fe, Co, Ni, PGE, etc. 2.EC. M:S = 1: >22.F: Sulfides of arsenic, alkalies; sulfides with halide, oxide, hydroxide, H₂O. 2.FA, With As, (Sb), S 2.FB. With alkalies (without Cl, etc.) 2.FC. With Cl, Br, I (halide-sulfides) 2.FD. With O, OH, H_2O Sulfosalts 2.G: Sulfarsenites, sulfantimonites, sulfbismuthites 2.GA. Neso-sulfarsenites, etc. without additional S 2.GB. Neso-sulfarsenites, etc. with additional S 2.GC. Poly-sulfarsenites 2.GD. Unclassified sulfosalts 2.H: Sulfosalts of SnS archetype 2.HA. With Cu, Ag, Fe (without Pb) 2.HB. With Cu, Ag, Fe, Sn and Pb 2.HC. With only Pb 2.HD. With Tl 2.HE. With alkalies, H₂O 2.HF. With SnS and PbS archetype structure units 2.J: Sulfosalts of PbS archetype 2.JA. Chains, combined into sheets 2.JB. Galena derivatives, with Pb 2.JC. Galena derivatives, with Tl 2.K: Sulfarsenates

18

3. HALIDES

- 3.A: Simple halides, without H_2O
 - 3.AA. M:X = 1:1 and 2:3
 - 3.AB. M: X = 1:2
 - 3.AC. M:X = 1:3
- 3.B: Simple halides, with H_2O
 - 3.BA. M:X = 1:1 and 2:3
 - 3.BB. M:X = 1:2
 - 3.BC. M: X = 1:3
 - 3.BD. Simple halides with H_2O and additional OH
- 3.C: Complex halides
 - 3.CA. Borofluorides
 - 3.CB. Neso-aluminofluorides
 - 3.CC. Soro-aluminofluorides
 - 3.CD. Ino-aluminofluorides
 - 3.CE. Phyllo-aluminofluorides
 - 3.CF. Tekto-aluminofluorides
 - 3.CG. Aluminofluorides with CO_3 , SO_4 , PO_4
 - 3.CH. Silicofluorides
 - 3.CJ. With MX_6 complexes; M = Fe, Mn, Cu
- 3.D: Oxyhalides, hydroxyhalides and related double halides
 - 3.DA. With Cu, etc., without Pb
 - 3.DB. With Pb, Cu, etc.
 - 3.DC. With Pb (As, Sb, Bi), without Cu
 - 3.DD. With Hg
- 4. OXIDES (Hydroxides, $V^{[5,6]}$ vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)
- 4.A: Metal:Oxygen = 2:1 and 1:1
 4.AA. Cation: Anion (M:O) = 2:1 (and 1.8:1)
 4.AB. M:O = 1:1 (and up to 1:1.25); with small to medium-sized cations only
 - 4.AC. M:O = 1:1 (and up to 1:1.25); with large cations (\pm smaller ones)
- 4.B: Metal:Oxygen = 3:4 and similar
 - 4.BA. With small and medium-sized cations
 - 4.BB. With only medium-sized cations
 - 4.BC. With medium-sized and large cations
 - 4.BD. With only large cations
- 4.C: Metal:Oxygen = 2:3, 3:5, and similar
 - 4.CA. With small cations
 - 4.CB. With medium-sized cations
 - 4.CC. With large and medium-sized cations
- 4.D: Metal: Oxygen = 1:2 and similar
 - 4.DA. With small cations: Silica family
 - 4.DB. With medium-sized cations; chains of edge-sharing octahedra
 - 4.DC. With medium-sized cations; sheets of edge-sharing octahedra

- 4.DD. With medium-sized cations; frameworks of edge-sharing octahedra 4.DE. With medium-sized cations; with various polyhedra 4.DF. With large (± medium-sized) cations; dimers and trimers of edge-sharing octahedra 4.DG. With large (± medium-sized) cations; chains of edge-sharing octahedra 4.DH. With large (± medium-sized) cations; sheets of edge-sharing octahedra 4.DJ. With large (± medium-sized) cations; polyhedral frameworks 4.DK. With large (± medium-sized) cations; tunnel structures 4.DL. With large (± medium-sized) cations; fluorite-type structures 4.DM. With large (± medium-sized) cations; unclassified 4.E: Metal: Oxygen = < 1:24.F: Hydroxides (without V or U) 4.FA. Hydroxides with OH, without H₂O; corner-sharing tetrahedra 4.FB. Hydroxides with OH, without H₂O; insular octahedra 4.FC. Hydroxides with OH, without H₂O; corner-sharing octahedra 4.FD. Hydroxides with OH, without H₂O; chains of edge-sharing octahedra 4.FE. Hydroxides with OH, without H₂O; sheets of edge-sharing octahedra 4.FF. Hydroxides with OH, without H₂O; various polyhedra 4.FG. Hydroxides with OH, without H₂O; unclassified 4.FH. Hydroxides with $H_2O \pm (OH)$; insular octahedra 4.FJ. Hydroxides with $H_2O \pm (OH)$; corner-sharing octahedra 4.FK. Hydroxides with $H_2O \pm (OH)$; chains of edge-sharing octahedra 4.FL. Hydroxides with $H_2O \pm (OH)$; sheets of edge-sharing octahedra 4.FM. Hydroxides with $H_2O \pm (OH)$; unclassified 4.G: Uranyl Hydroxides 4.GA. Without additional cations 4.GB. With additional cations (K, Ca, Ba, Pb, etc.); with mainly UO₂(O,OH)₅ pentagonal polyhedra 4.GC. With additional cations; with mainly $UO_2(O,OH)_6$ hexagonal polyhedra 4.H: V^[5,6] Vanadates 4.HA. Nesovanadates 4.HB. Uranyl Sorovanodates 4.HC. [6]-Sorovanadates 4.HD. Inovanadates 4.HE. Phyllovanadates 4.HF. Tektovanadates 4.HG. Unclassified V oxides 4.J: Arsenites; antimonites, bismuthites, sulfites, selenites, tellurites; iodates. 4.JA: Arsenites, antimonites, bismuthites; without additional anions, without H₂O
 - H_2O 4.JB. Arsenites, antimonites, bismuthites; with additional anions, without H_2O
 - 4.JC. Arsenites, antimonites, bismuthites; without additional anions, with H₂O
 - 4.JD. Arsenites, antimonites, bismuthites; with additional anions, with H_2O
 - 4.JE. Sulfites
 - 4.JF. Selenites without additional anions, without H₂O

- 4.JG. Selenites with additional anions, without H₂O
- 4.JH. Selenites without additional anions, with H₂O
- 4.JJ. Selenites with additional anions, with H_2O
- 4.JK. Tellurites without additional anions, without H₂O
- 4.JL. Tellurites with additional anions, without H₂O
- 4.JM. Tellurites without additional anions, with $\mathrm{H}_{2}\mathrm{O}$
- 4.JN. Tellurites with additional anions, with H_2O

4.K: Iodates

- 4.KA. Iodates without additional anions, without H₂O
- 4.KB. Iodates with additional anions, without H_2O
- 4.KC. Iodates without additional anions, with H_2O
- 4.KD. Iodates with additional anions, with H_2O

5. CARBONATES (+ NITRATES)

```
5.A: Carbonates without additional anions, without H_2O
```

- 5.AA. Alkali carbonates
- 5.AB. Alkali-earth (and other M^{2+}) carbonates
- 5.AC. Alkali and alkali-earth carbonates
- 5.AD. With rare-earth elements (REE)
- 5.B: Carbonates with additional anions, without H₂O
 - 5.BA. With Cu, Co, Ni, Zn, Mg, Mn
 - 5.BB. With alkalies, etc.
 - 5.BC. With alkali-earth cations
 - 5.BD. With rare earth elements (REE)
 - 5.BE. With Pb, Bi
 - 5.BF. With (Cl), SO₄, PO₄
- 5.C: Carbonates without additional anions, with H₂O
 - 5.CA. With medium-sized cations
 - 5.CB. With large cations (alkali and alkali-earth carbonates)
 - 5.CC. With rare earth elements (REE)
- 5.D: Carbonates with additional anions, with H₂O
 - 5.DA. With medium-sized cations
 - 5.DB. With large and medium-sized cations
 - 5.DC. With large cations

5.E: Uranyl Carbonates

- 5.EA. $UO_2:CO_3 = 1:1$
- 5.EB. $UO_2:CO_3 = <1:1$ to 1:2
- 5.EC. $UO_2:CO_3 = 1:3$
- 5.ED. $UO_2:CO_3 = 1:4$
- 5.EE. $UO_2:CO_3 = 1:5$
- 5.EF. $UO_2:CO_3 > 1:1$
- 5.EG. With SO_4 or SiO_4

5.N: NITRATES

- 5.NA. Without OH or H_2O
- 5.NB. With OH

5.NC. With H_2O 5.ND. With OH (etc.) and H_2O

6. BORATES

6.A: Monoborates

6.AA. BO₃, without additional anions; $1(\Delta)$.

6.AB. BO₃, with additional anions; $1(\Delta) + OH$, etc.

6.AC. $B(O,OH)_4$, without and with additional anions; 1(T), 1(T)+OH, etc.

6.B: Diborates

6.BA. Neso-diborates with double triangles $B_2(O,OH)_5$; $2(2\Delta)$; $2(2\Delta) + OH$, etc.

6.BB. Neso-diborates with double tetrahedra $B_2O(OH)_6$; 2(2T)

6.BC. Ino-diborates with triangles and/or tetrahedra

6.C: Triborates

- 6.CA. Neso-triborates
- 6.CB. Ino-triborates

6.CC. Phyllo-triborates

6.D: Tetraborates

6.DA. Neso-tetraborates

6.DB. Ino-tetraborates

6.DC. Phyllo-tetraborates

- 6.DD. Tekto-tetraborates
- 6.E: Pentaborates
 - 6.EA. Neso-pentaborates
 - 6.EB. Ino-pentaborates
 - 6.EC. Phyllo-pentaborates
 - 6.ED. Tekto-pentaborates
- 6.F: Hexaborates

6.FA. Neso-hexaborates

- 6.FB. Ino-hexaborates
- 6.FC. Phyllo-hexaborates
- 6.G: Heptaborates and other megaborates
- 6.H: Unclassified borates
- 7. SULFATES (selenates, tellurates; chromates, molybdates, wolframates)
- 7.A: Sulfates (selenates, etc.) without additional anions, without H₂O
 - 7.AA. With small cations
 - 7.AB. With medium-sized cations
 - 7.AC. With medium-sized and large cations
 - 7.AD. With only large cations
- 7.B: Sulfates (selenates, etc.) with additional anions, without H₂O
 - 7.BA. With small cations

7.BB. With medium-sized cations

- 7.BC. With medium-sized and large cations
- 7.BD. With only large cations
- 7.C: Sulfates (selenates, etc.) without additional anions, with H₂O

- 7.CA. With small cations
 - 7.CB. With only medium-sized cations
 - 7.CC. With medium-sized and large cations
 - 7.CD. With only large cations
- 7.D: Sulfates (selenates, etc.) with additional anions, with H_2O
 - 7.DA. With small cations
 - 7.DB. With only medium-sized cations; insular octahedra and finite groups
 - 7.DC. With only medium-sized cations; chains of edge-sharing octahedra
 - 7.DD. With only medium-sized cations; sheets of edge-sharing octahedra
 - 7.DE. With only medium-sized cations; unclassified
 - 7.DF. With large and medium-sized cations
 - 7.DG. With large and medium-sized cations; with NO₃, CO₃, B(OH)₄, SiO₄ or IO₃
- 7.E: Uranyl sulfates
 - 7.EA. Without cations
 - 7.EB. With medium-sized cations
 - 7.EC. With medium-sized and large cations
- 7.F: Chromates
 - 7.FA. Without additional anions
 - 7.FB. With additional O, V, S, Cl
 - 7.FC. With PO₄, AsO₄, SiO₄
 - 7.FD. Dichromates
- 7.G: Molybdates and wolframates
 - 7.GA. Without additional anions or H_2O
 - 7.GB. With additional anions and/or H_2O
- 7.H: Uranium and uranyl molybdates and wolframates
 - 7.HA. With U^{4+}
 - 7.HB. With U⁶⁺

8. PHOSPHATES, ARSENATES, VANADATES

- 8.A: Phosphates, etc. without additional anions, without H₂O
 8.AA. With small cations (some also with larger ones)
 8.AB. With medium-sized cations
 8.AC. With medium-sized and large cations
 - 8.AD. With only large cations
- 8.B: Phosphates, etc., with additional anions, without H_2O
 - 8.BA. With small and medium-sized cations
 - 8.BB. With only medium-sized cations, (OH, etc.): $RO_4 \le 1:1$
 - 8.BC. With only medium-sized cations, (OH, etc.): $RO_4 > 1:1$ and < 2:1
 - 8.BD. With only medium-sized cations, $(OH, etc.): RO_4 = 2:1$
 - 8.BE. With only medium-sized cations, $(OH, etc.): RO_4 > 2:1$
 - 8.BF. With medium-sized and large cations, (OH, etc.): $RO_4 < 0.5:1$
 - 8.BG. With medium-sized and large cations, (OH, etc.): $RO_4 = 0.5:1$
 - 8.BH. With medium-sized and large cations, (OH, etc.): $RO_4 = 1:1$
 - 8.BJ. With medium-sized and large cations, (OH, etc.): $RO_4 = 1.5:1$
 - 8.BK. With medium-sized and large cations, (OH, etc.): RO₄ = 2:1, 2.5:1

¥

8.C:	8.BL. With medium-sized and large cations, $(OH, etc.): RO_4 = 3:1$ 8.BM. With medium-sized and large cations, $(OH, etc.): RO_4 = 4:1$ 8.BN. With only large cations, $(OH, etc.): RO_4 = 0.33:1$ 8.BO. With only large cations, $(OH, etc.): RO_4 \ge 1:1$ Phosphates without additional anions, with H ₂ O 8.CA. With small and large/medium cations 8.CB. With only medium-sized cations, $RO_4: H_2O = 1:1$ 8.CC. With only medium-sized cations, $RO_4: H_2O = 1:1.5$ 8.CD. With only medium-sized cations, $RO_4: H_2O = 1:2$ 8.CE. With only medium-sized cations, $RO_4: H_2O \le 1:2.5$ 8.CF. With large and medium-sized cations, $RO_4: H_2O > 1:1$ 8.CG. With large and medium-sized cations, $RO_4: H_2O > 1:1$ 8.CH. With large and medium-sized cations, $RO_4: H_2O < 1:1$ 8.CH. With large and medium-sized cations, $RO_4: H_2O < 1:1$ 8.CH. With large and medium-sized cations, $RO_4: H_2O < 1:1$
8.D:	Phosphates, etc. with additional anions, with H_2O
	8.DA. With small (and occasionally larger) cations
	8.DB. With only medium-sized cations, (OH, etc.): $RO_4 < 1:1$
	8.DC. With only medium-sized cations, (OH, etc.): $RO_4 = 1:1$ and $< 2:1$
	8.DD. With only medium-sized cations, (OH, etc.): $RO_4 = 2:1$
	8.DE. With only medium-sized cations, (OH, etc.): $RO_4 = 3:1$
	8 DG With large and medium-sized cations (OH, etc.): $RO_4 > 5:1$
	8 DH. With large and medium-sized cations, (OH, etc.): $RO_4 < 0.5.1$
	8.DJ. With large and medium-sized cations, (OH, etc.): $RO_4 = 1:1$
	8.DK. With large and medium-sized cations, (OH, etc.): $RO_4 > 1:1$ and $< 2:1$
	8.DL. With large and medium-sized cations, (OH, etc.): $RO_4 = 2:1$
	8.DM. With large and medium-sized cations, (OH, etc.): $RO_4 > 2:1$
	8.DN. With only large cations
	8.DO. With CO_3 , SO_4 , SiO_4
8.E:	Uranyl phosphates and arsenates
	8.EA. UO_2 : $RO_4 = 1:2$
	8.E.B. $UU_2: KU_4 = 1:1$
	$0.EU. UU_2.KU_4 = 5.2$ $8 ED Unclassified$
<u>१</u> म	Polynhosphates polyarsenates [4]-polyyanadates
0.1 .	8.FA. Diphosphates, etc., without OH and H ₂ O: dimers of corner-sharing RO ₄ tetra-
	hedra
	8.FB. Diphosphates, etc., with OH only
	8.FC. Diphosphates, etc., with H_2O only
	8.FD. Diphosphates, etc., with OH and H_2O
	8.FE. Ino-[4]-vanadates

9. SILICATES (Germanates)

9.A: Nesosilicates

9.AA. Nesosilicates without additional anions; cations in tetrahedral [4] coordination

9.AB. Nesosilicates without additional anions; cations in [4] and greater coordination

9.AC. Nesosilicates without additional anions; cations in octahedral [6] coordination

9.AD. Nesosilicates without additional anions; cations in [6] and/or generally greater coordination

9.AE. Nesosilicates with additional anions (O, OH, F, H_2O); cations in tetrahedral [4] and mostly greater coordination

9.AF. Nesosilicates with additional anions; cations in [4], [5] and/or only [6] coordination

9.AG. Nesosilicates with additional anions; cations in mostly [6] and > [6] coordination

9.AH. Nesosilicates with CO₃, SO₄, PO₄, etc.

9.AJ. Nesosilicates with BO_3 triangles and/or $B^{[4]}$, $Be^{[4]}$ tetrahedra, corner-sharing with SiO_4 tetrahedra

9.AK. Uranyl neso- and polysilicates

9.B: Sorosilicates

9.BA. Si_2O_7 groups, without non-tetrahedral anions; cations in tetrahedral [4] coordination

9.BB. Si_2O_7 groups, without non-tetrahedral anions; cations in tetrahedral [4] and greater coordination

9.BC. Si_2O_7 groups, without non-tetrahedral anions; cations in octahedral [6] and greater coordination

 $9.\mathrm{BD},\mathrm{Si}_2\mathrm{O}_7$ groups, with additional anions; cations in tetrahedral [4] and greater coordination

9.BE. Si_2O_7 groups, with additional anions; cations in octahedral [6] and/or other coordination

9.BF. Sorosilicates with mixed SiO_4 and Si_2O_7 anions; cations in tetrahedral [4] and greater coordination

9.BG. Sorosilicates with mixed SiO_4 and Si_2O_7 groups; cations in octahedral [6] and greater coordination

9.BH. Sorosilicates with Si_3O_{10} , or larger anions; cations in tetrahedral [4] and greater coordination

9.BJ. Sorosilicates with Si_3O_{10} , Si_4O_{11} , etc. anions; cations in octahedral [6] and/or greater coordination

9.BK. Unclassified sorosilicates

9.C: Cyclosilicates

9.CA. $[Si_3O_9]^{6-}$ 3-membered single rings (*dreier-Einfachringe*), without insular complex anions

9.CB. [Si₃O₉]⁶⁻ 3-membered single rings, with insular complex anions

9.CC. [Si₃O₉]⁶⁻ branched 3-membered single rings

9.CD. [Si₃O₉]⁶⁻ 3-membered double rings

9.CE. $[Si_4O_{12}]^{8-}$ 4-membered single rings (*vierer-Einfachringe*), without insular complex anions

9.CF. $[Si_4O_{12}]^{8-}$ 4-membered single rings, with insular complex anions

9.CG. [Si₄O₁₂]⁸⁻ branched 4-membered single rings

9.CH. $[Si_4O_{12}]^{8-}$ 4-membered double rings

9.CJ. [Si₆O₁₈]¹²⁻ 6-membered single rings (sechser-Einfachringe), without insular complex anions

9.CK. [Si₆O₁₈]¹²⁻ 6-membered single rings, with insular complex anions

9.CL. [Si₆O₁₈]¹²⁻ branched 6-membered single rings 9.CM. [Si₆O₁₈]¹²⁻ 6-membered double rings (*sechser-Doppelringe*)

9.CN. [Si₈O₂₄]¹⁶⁻ 8-membered rings

9.CO. [Si₉O₂₇]¹⁸⁻ 9-membered rings

9.CP. 12-membered and larger rings

9.D: Inosilicates.

9.DA. Inosilicates with 2-periodic single chains, Si₂O₆; pyroxene family

9.DB. Inosilicates with 2-periodic single chains, Si₂O₆; with additional O, OH, H₂O. Pyroxene-related minerals

9.DC. Inosilicates with branched 2-periodic single chains

9.DD. - 9.DE. Inosilicates with 2-periodic double chains; amphibole family

9.DD. Orthoamphiboles

9.DE. Clinoamphiboles

9.DF. Inosilicates with 2-periodic multiple chains

9.DG. Inosilicates with 3-periodic single and multiple chains

9.DH. Inosilicates with 4-periodic single chains

9.DJ. Inosilicates with 4-periodic double and triple chains

9.DK. Inosilicates with 5-periodic single chains

9.DL. Inosilicates with 5-periodic double chains

9.DM. Inosilicates with 6-periodic single chains

9.DN. Inosilicates with 6-periodic double chains

9.DO. Inosilicates with 7-, 8-, 10-, 12- and 14-periodic chains

9.DP. Transitional ino-phyllosilicate structures

9.DQ. Unclassified inosilicates

9.E: Phyllosilicates

9.EA. Single nets of tetrahedra with 4-, 5-, (6-), and 8-membered rings

9.EB. Double nets with 4- and 6-membered rings

9.EC. Phyllosilicates with mica sheets, composed of tetrahedral and octahedral nets

9.ED. Phyllosilicates with kaolinite layers composed of tetrahedral and octahedral nets

9.EE. Single tetrahedral nets of 6-membered rings connected by octahedral nets or octahedral bands

9.EF. Single nets with 6-membered rings, connected by M^[4], M^[8], etc.

9.EG. Double nets with 6-membered rings

9.EH. Transitional structures between phyllosilicate and other silicate units

9.F: Tektosilicates without zeolitic H₂O

9.FA. Tektosilicates without additional non-tetrahedral anions

9.FB. Tektosilicates with additional anions

9.G: Tektosilicates with zeolitic H₂O: zeolite family

9.GA. Zeolites with chains of 4-membered rings connected by a fifth Si 9.GB. Zeolites with chains of single connected 4-membered rings

9.GC. Zeolites with chains of doubly-connected 4-membered rings 9.GD. Zeolites with chains of 5-membered rings 9.GE. Zeolites with sheets with 4-4-1-1 structural units 9.GF. Zeolites with Leucite-type frameworks 9.GG. Zeolites with Cages and double cages of 4-, 6-, and 8-membered rings 9.GH. Unclassified zeolites 9.H: Unclassified silicates 9.HA. With Alkali and Alkali-earth Elements 9.HB. With Ti, V, Cr 9.HC. With Mn, Fe 9.HD. With Co, Ni 9.HE. With Cu, Zn 9.HF. With Nb, Ta, Zr 9.HG. With REE, Th 9.HH. With Pb 9.J: Germanates

10. ORGANIC COMPOUNDS

- 10.A: Salts of organic acids
 10.AA. Acetates
 10.AB. Oxalates
 10.AC. Benzine Salts
 10.AD. Cyanates
 10.B: Hydrocarbons
- 10.C: Miscellaneous Organic Minerals

In the preparation of the tabulation, which comprises the main portion of this book, we used information from a large number of sources. Most of the data came from primary published sources, but much useful information was also obtained from secondary sources such as the *Mineral Database* produced by Aleph Enterprises, Livermore, California, and various textbooks, notably *Structural Chemistry of Silicates* by F. Liebau (1985), *Natural Zeolites* by G. Gottardi and E. Galli (1985), *Crystallography and Crystal Chemistry* by F. D. Bloss (1994), and *Crystal Structure, I. Patterns and Symmetry* by M. O'Keeffe and B. G. Hyde (1996), Authoritative crystallographic information is provided by *International Tables for Crystallography*, Volume A, fourth, revised and enlarged edition by Theo Hahn (1996), and *Brief Teaching Edition of International Tables for Crystallography*, Volume A, by Theo Hahn, editor (1996), both published by Kluwer Academic, Dordrecht. The structure diagrams were produced by means of the *Atoms* computer program developed by Eric Dowty of Shape Software, Kingsport, Tennessee, USA.

References to published data cited in the tabulations are given in an abbreviated form in the interest of saving space. In general, only the year of publication and the page number are cited, but when several volumes are published within the same year, the volume number is added after the year, e. g. ZK 1987/181. The abbreviations used are as follows:

PERIODICALS

AC

Accad. Naz. Lincei Acta Chem. Scand. Acta Geol. Sinica Acta Min. Sinica Acta Petr. Min. Acta Phys. Sinica Ah AM Am. J. Sci. Ann. Phys. Ark. Kem. Ark. Kem. Min. Geol. Ark. Min. Geol. Austral. J. Chem. Austral, J. Min. Austral. J. Phys. Austral. Min. BM

Bull. Geol. Soc. Denmark Bull. Geol. Soc. Finland Bull. Geol. Soc. Turkey BYU Can. J. Chem. CA Chem. Comm. Chem. Erde Chem. Lett. Chem. Mater. Chinese Sci. Bull. CIM Spec. Vol. Clay Mins. Clays Cl. Mins. CM Contr. Min. Pet. CR Cryst. Struct. Comm. Czech. J. Phys. Dok. Akad. Nauk Dok. Akad. Nauk SSSR Dok. Earth Sci.

Acta Crystallographica Accademia Nazionale dei Lincei Acta Chemica Scandinavica Acta Geologica Sinica Acta Mineralogica Sinica Acta Petrologica Mineralogica (Chinese) Acta Physica Sinica Neues Jahrbuch für Mineralogie, Abhandlungen American Mineralogist American Journal of Science Annalen der Physik Arkiv för Kemi Arkiv för Kemi, Mineralogi och Geologi Arkiv för Mineralogi och Geologi Australian Journal of Chemistry Australian Journal of Mineralogy Australian Journal of Physics Australian Mineralogist Bulletin Société française de Minéralogie et Crystallographie; Bulletin de Minéralogie Bulletin of the Geological Society of Denmark Bulletin of the Geological Society of Finland Bulletin of the Geological Society of Turkey Brigham Young University Canadian Journal of Chemistry Chemical Abstracts **Chemical Communications** Chemie der Erde **Chemistry Letters** Chemistry of Materials **Chinese Science Bulletin** Canadian Institute of Mining and Metallurgy, Special Volume **Clay** Minerals Clays and Clay Minerals Canadian Mineralogist Contributions to Mineralogy and Petrology Comptes Rendus de l'Academie des Sciences, Paris Grystal Structure Communications Czechoslovak Journal of Physics Doklady Akademiy Nauk Doklady Akademiy Nauk SSSR Transactions (Doklady) of the USSR Academy of Sciences, Earth Science Sections

è.

Ec. Geol. Economic Geology European Journal of Mineralogy EJM Eur. J. Sol. St. Inorg. Chem. European Journal of Solid State Inorganic Chemistry Fortsch. Min. Fortschritte der Mineralogie GAC-MAC Geological Association of Canada - Mineralogical Association of Canada (Annual Meeting) Geochim. Cosmochim. Acta Geochimica et Cosmochimica Acta Geol. För. Förh. Geologiska Föreningens i Stockholm, Förhandlingar Grønl. Geol. Undersøg. Grønlands Geologiske Undersøgelse Handbook of Mineralogy (Anthony et al.) Handb. Min. Helv. Chim. Acta Helvetica Chimica Acta IGC International Geological Congress IMA International Mineralogical Association Inorganic Chemistry Inorg. Chem. Journal of Alloys and Compounds J. Alloys Comp. J. Am. Chem. Soc. Journal of the American Chemical Society J. Appl. Chem. Journal of Applied Chemistry J. Appl. Cryst. Journal of Applied Crystallography Journal of Applied Physics J. Appl. Phys. Journal of the Chemical Society, Dalton Transactions J. Chem. Soc. Dalt. J. Chem. Phys. Journal of Chemical Physics J. Geol. Soc. Japan Journal of the Geological Society of Japan J. Inorg. Nucl. Chem. Journal of Inorganic and Nuclear Chemistry Journal of Less-Common Metals JLCM J. Min. Soc. Jap. Journal of the Mineralogical Society of Japan Journal of Molecular Structure J. Mol. Struct. J. Phys. Journal of Physics J. Phys. Chem. Journal of Physical Chemistry J. Phys. Chem. Sol. Journal of the Physics and Chemistry of Solids J. Phys. Soc. Japan Journal of the Physical Society of Japan J. Res. NBS Journal of Research, National Bureau of Standards J. Sol. St. Chem. Journal of Solid State Chemistry Struct. Chem. Journal of Structural Chemistry J. Wash. Acad. Sci. Journal of the Washington Academy of Science Kali u. Steinsalz Kali und Steinsalz Lunar and Planetary Sciences Lunar Planet. Sc. **Mineralogical Abstracts** MA Mater. Res. Bull. Materials Research Bulletin Medd. Grønland Meddelelser om Grønland Neues Jahrbuch für Mineralogie, Monatshefte Mh Mh. Chem. Monatshefte für Chemie Min. Deposita Mineralium Deposita Min. Jour. Mineralogical Journal (Japan) Mineralogy and Petrology Min. Pet. Min. Polonica Mineralogica Polonica

Min. Tab.	Mineralogische Tabellen
Min. Zhur.	Mineralogicheskiy Zhurnal (Ukraine)
Mitt. Österr. Min. Ges.	Mitteilungen der Österreichischen Mineralogischen Ge-
	sellschaft
MM	Mineralogical Magazine
MR	Mineralogical Record
MSA	Mineralogical Society of America (Annual Meeting)
MSA Spec. Pap.	Mineralogical Society of America Special Paper
Nature, Phys. Sci.	Nature, Physical Sciences
Naturw.	Naturwissenschaften
NBS Circ.	National Bureau of Standards, Circular
NBS Monogr.	National Bureau of Standards, Monograph
New Zeal, J. Geol. Geoph.	New Zealand Journal of Geology and Geophysics
Norsk Geol Tid	Norske Geologisk Tidsskrift
Norske Vid	Norske Videnskansakademi
PDF	Powder Diffraction File of the International Centre for
	Diffraction Data (ICPDS)
Per Min	Periodico di Mineralogia
Phil Mag	Philosophical Magazine
Physik 7	Physikalische Zaitschrift
Phys Chem Min	Invision and the Physics and Chemistry of Minerals
Phys Dev	Deviced Devices
Dowd Diff	Powder Diffraction
Proc Austrol I M M	Proposition of the Austrologian Institute of Mining and
F10C. Austral. 1.101.101.	Metallurgy
Proc Lun Sci Conf	Proceedings of the Lunar Science Conference
Proc Roy Soc	Proceedings of the David Society London
Pand A cond Lineoi	Proceedings of the Royal Society, London
Rend Soc Ital Min Dat	Rendiconti, Accadenna del Lincel
Rend. Soc. Min. Ital	Rendiconti, Societa Italiana di Mineralogia e Petrologia
Relia, Soc. Mill. Ital.	Renulconti, Societa Mineralogica Italiana
Rev. Min.	Reviews in Mineralogy (Mineralogical Society of America)
Rom. J. Min.	Romanian Journal of Mineralogy
Sc. Geol. Sinica	Scientia Geologica Sinica
SB SMDM	Strukturberichte
SMPM	Schweitzerische Mineralogische und Petrographische
Sou Dhua Crust	Millenungen Soziat Dhurias Crustalla suorbu
Sov. Phys. Cryst.	Soviet Physics, Crystallography
SOV. PHYS. DOK.	Soviet Physics, Doklady
	Structure Reports
Svensk Kem. Hd.	Svensk Kemisk lidskrift
IMPM	Tschermak's Mineralogische und Petrographische Mittei-
Tr Min Mug AN COOD	Iuligen Trude Mineraleziaho-kaoo Museur Alexander Musel
11. Min. Muz. An 333K	iruuy Mineralogicneskogo Muzeya Akademiya Nauk
LISCS Deaf Dar	
USGS Prot. Pap.	United States Geological Survey, Protessional Paper

Vestnik Moskovskogo Universiteta
Zeitschrift für Anorganische und Allgemeine Chemie
Zeitschrift für Anorganische Chemie
Zeitschrift für Elektrochemie
Zeitschrift für Kristallographie
Zeitschrift für Metallkunde
Zeitschrift für Naturforschung
Zeitschrift für Physikalische Chemie
Zapiski Vsesoyuznogo Mineralogicheskogo Obshchvestva;
Zapiski Vserossiyskogo Mineralogischeskogo Obshchestva