Función Cuadrática

Podemos definirla de la siguiente manera

$$f: \mathbb{R} \to \mathbb{R}/f(x) = ax^2 + bx + c$$

donde a, b, c son constantes Reales (\mathbb{R}), con $a \neq 0$

Su Dominio es \mathbb{R} , su imagen depende del valor de y_v y del signo de a (lea hasta el final para comprender totalmente, mire los gráficos).

Su representación gráfica en el plano cartesiano es una curva llamada **Parábola**, cuyo eje de simetría es paralelo al eje de las ordenadas (Eje Y). El estudio de las funciones cuadráticas tiene numerosas aplicaciones en campos muy diversos, como por ejemplo la **Caída Libre** o el **Tiro Parabólico.**

Se la puede expresar de varias formas:

FORMA	EXPRESIÓN	PARAMETROS
POLINÓMICA	$y = f(x) = ax^2 + bx + c$	a: Coeficiente Termino Cuadratico (a ≠ 0) b: Coeficiente Termino Lineal c: Termino Independiente o Constante
CANÓNICA	$y = f(x) = a(x - x_v)^2 + y_v$	Conociendo las Coordenadas del Vértice $(x_v; y_v)$
FACTORIZADA	$y = a(x - x_1)(x - x_2)$	Conociendo las Raíces o Ceros x ₁ y x ₂

• <u>Vértice:</u>

Es el Punto más importante de la parábola, es por donde pasa el eje de Simetría,

$$v = (x_v, y_v)$$

Para calcularlo puede usar:

$$x_v = -\frac{b}{2a}$$
 e $y_v = \frac{4ac - b^2}{4a}$ o $y_v = f(x_v)$ o $x_v = \frac{x_1 + x_2}{2}$

• Eje de Simetría:

La grafica de una función cuadrática es simétrica con respecto a una recta vertical (Eje de Simetría), esto significa que dados dos valores de x, que estén a una misma distancia del eje de simetría (uno a la izquierda y otro a la derecha), la función toma, en ambos casos, el mismo valor.

$$x = x_v$$

Mire los siguientes ejemplos:

PARABOLA	EJE DE SIMETRIA	PUNTOS SIMETRICOS
$1) Y = X^2$	X = 0	$P_1(-1,1)con P_2(1,1)$
2) $Y = 3X^2 + 1$	X = 0	$P_1(-2,13)con P_2(2,13)$
3) $Y = -X^2 + 2X + 3$	X = 1	$P_1(0,3)con P_2(2,3)$

• Concavidad:

Si (a > 0) se dice que la parabola es cóncacava hacia arriba.

En este caso el vértice es el **mínimo** de la parábola.

Si (a < 0) se dice que la parabola es cóncacava hacia abajo.

Y el vértice será el **m**á**ximo** de la parábola.

• Naturaleza de las raíces:

Se puede saber la naturaleza de las raíces mediante el Discriminante (D) de la ecuación:

$$D = b^2 - 4ac$$

Donde a, b y c son los coeficientes de $y = f(x) = ax^2 + bx + c = 0$

$$y = f(x) = ax^2 + bx + c = 0$$

Si

$$D > 0$$
 $x_1 \neq x_2$ Raices $\mathbb{R}(Reales)$ y Distintas.

No tiene Solución en el Conjunto Numérico R

Recuerde lo visto en el primer trabajo práctico, la raíz par de un radicando negativo no tiene solución en los R (En el conjunto de los C si tiene solución)

$$D = 0$$
 $x_1 = x_2$ Raices $\mathbb{R}(Reales)$ e Iguales

• Ceros de la Función o raíces:

Son los valores de x para los cuales la expresión vale 0. Gráficamente, las raíces corresponden a las abscisas de los puntos donde la parábola corta al eje x. Podemos determinar las raíces de una función cuadrática utilizando la siguiente fórmula:

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Propiedades Raices:
$$x_1 + x_2 = -\frac{b}{a}$$
; $x_1 \cdot x_2 = \frac{c}{a}$

• Gráficos:

Para
$$f(x) = 3x^2 + 1$$
 Img $f(x) = [0, \infty)$



