
University of Hamburg
Department of Informatics
Scientific Computing

Continuous Simulation with Ordinary Differential
Equations

Seminar Paper

Modeling and Simulation

Julian Busch

Matr.Nr. 6140789

9busch@informatik.uni-hamburg.de

Advisor: Nathanael Hübbe

March 31, 2013

Contents

1 Introduction 4

2 Continuous Simulation 5

3 Ordinary Differential Equations 7
3.1 Differential Equations . 7
3.2 Initial Value Problems . 9
3.3 Numerical Methods . 11

3.3.1 Euler’s Method . 11
3.3.2 Analysis . 12
3.3.3 Generalizations . 14
3.3.4 Adaptive Step-size . 16

4 Application: N-body Simulations 17
4.1 Model . 17
4.2 Simulation . 18

5 Conclusion 20

References 21

3

1 Introduction

Modeling and simulation of a system describes the two processes of deriving a mathemat-
ical model that describes the behavior of a system of interest and solving the obtained
model to determine the system’s response in different situations. The system can be
viewed as a set of components that act together to transform an input signal into an
output signal. In addition to the input and output variables, the system contains a set of
internal state variables. Continuous simulation, in contrast to discrete event simulation,
refers to systems which input, output and state variables are defined over a range of time
rather than for a set of discrete points in time t0, t1, t2, For example, let a system
receive an input from a temperature sensor, then the temperature could be read and
provided by the sensor as a continuous signal or only for some discrete points in time,
say every 30 seconds. Similarly, a system can change its internal state and behavior only
at discrete points in time or continuously. Continuous systems are usually modeled us-
ing differential equations. In general, changes in quantities can accurately be described
using differentials and derivatives and be related to other quantities via equations. Be-
cause differential equations are such a basic mathematical concept, they naturally arise
in many different contexts such as physics (celestial mechanics) , earth science (weather
and climate modeling), chemistry (reaction rates), biology, social sciences, economics
and many more. Historically, continuous simulation is one of the first uses ever put to
computers: the first electronic general-purpose computer ENIAC, announced in 1946,
was first used by Los Alamos scientists to simulate the dynamics of the hydrogen bomb.

The simulation of a system requires the solution of its mathematical model. In this
presentation, we will concentrate on systems that can be modeled with ordinary dif-
ferential equations. After a brief introduction of the main characteristics of continuous
simulation in Section 2, Section 3 will present ordinary differential equations together
with Initial value problems and methods for their solution. Since many important equa-
tions that are encountered in practice cannot be solved analytically, numerical methods
are commonly employed. On this note, the focus of the section as well as that of the
whole presentation will be on the numerical simulation of systems that can be modeled
with ordinary differential equations. Based on Euler’s famous method, several more elab-
orate methods and extensions that take care of certain issues will be presented together
with basic concepts for their analysis. Section 4 attempts to illustrate at least the basic
treated concepts by applying them to an example problem, N-body simulations. For this
sake, the two steps of modeling our solar system with a system of ordinary differential
equations and simulating it using Euler’s method are demonstrated. A conclusion is
provided in Section 5.

4

2 Continuous Simulation

Simulating a system means to solve its mathematical model and to predict its behavior
in different situations based on that solution. We will commence this section with a
short introductory example of a modeling-and-simulation process of a simple continuous-
time system (taken from [AA08]) and present two important criteria to classify systems.
These criteria can be used to describe the class of systems that are modeled with ordinary
differential equations. The section will be concluded with a note on the use of numerical
methods for continuous simulation.

Consider a ball that is falling from a height of 100 meters, perhaps because it has been
dropped by a person standing on top of a high building. We are interested in how much
time it takes the ball to reach the ground and how fast it is during the impact. For
the sake of answering these questions, we need to make certain assumptions to build a
model that describes the behavior of the falling ball. For simplicity, we will assume that
only a constant gravitational force is acting on the ball which is located near sea level.
Initially, the ball has a position x(0) = 100 and a speed v(0) = 0. A possible model is
then given by the following system of ordinary differential equations together with the
two initial values for x and v:

x′(t) = v(t), v′(t) = −9.8

x(0) = 100, v(0) = 0

The above equations together with their initial values are called an initial value prob-
lem. Initial value problems will be treated in the next section. The above problem can
be solved by simply integrating the equations and choosing the constants of integration
so that the initial conditions for the functions x and v are satisfied. This yields the
following solution:

x(t) = 100− 0.5(9.8)t2

v(t) = −9.8t

Now that the position and velocity of the ball are given as functions of time, we can
use these functions to simulate the fall. The answers to our initial questions are that
the ball needs 4.5175 s to reach the ground and its impact speed is −44.2719 m/s.
Obviously, the model is too simple to be realistic but depending on the context of its
application and the required accuracy, it can be refined, for example by considering the
effect of air resistance.

5

The system that is modeled in the falling-ball example has two important properties:
its time variable is continuous and the ball is treated as a point mass. In general, systems
can be classified based on the continuity of their time variable and based on their spatial
characteristics, among other criteria of course. For a continuous-time system, the input,
output and state variables are defined for all t in some time interval [ti, tj], where for a
discrete-time system, the variables are only defined for a discrete set of points in time
{t0, t1, t2, . . . }. Regarding its spatial characteristics, a system can be either lumped or
distributed. A lumped model is obtained by ignoring the physical dimensions of a system.
In the falling-ball example, the ball was treated as a point mass with no spatial extent so
that there was no dependence on spatial coordinates and only one independent variable
appeared in the equations, the time variable t. In contrast, a distributed model does
consider the physical dimension of a system and consequently, the spatial coordinates
appear as independent variables in addition to t. For example, the distribution of heat
over time in a given region can be described by the heat equation. In this model, the
temperature is a function of the spatial coordinates and the time variable t.

In this presentation, we will consider only continuous and lumped systems. These
systems can be modeled with ordinary differential equations, which will be introduced in
the next section. For distributed systems, the more general partial differential equations
are needed. In contrast to ordinary differential equations, partial differential equations
deal with functions of multiple independent variables, like for example the temperature
function in the heat equation.

Because many important ordinary differential equations cannot be solved analytically,
solutions are often approximated using numerical methods. It should be noted that these
methods usually provide approximations of the solution at consecutive points in time
t0, t1, t2, . . . , so that the formerly continuous model is discretized. This discretization
process can entail several problems that need to be taken care of, for example issues
involving aliasing, but we won’t discuss them here.

6

3 Ordinary Differential Equations

This section attempts to provide a brief introduction to ordinary differential equations,
which model the type of systems considered in this presentation, along with methods for
their solution. We will focus on initial value problems for ordinary differential equations,
of which we have already seen an example in the last section, and how to solve them
numerically. Based on the simple and famous Euler method, several more elaborate
numerical methods and extensions that take several issues into account are introduced
along with basic concepts for their analysis. Several examples are included to illustrate
the treated concepts.

3.1 Differential Equations

An ordinary differential equation (ODE) is an equation that contains a function of one
independent variable and its derivatives. It is ordinary in the sense that no partial
derivatives are involved, as in partial differential equations, since they only apply to
functions of multiple independent variables. We have already seen examples of ODEs in
the last section. Additional examples are the following two equations:

y′(t) = y(t)

x′′(t) =
F (t, x(t))

m

We will further examine the first equation in the following. The second equation
is a famous equation from classical mechanics and represents Newton’s Second Law,
which states that the total force that is exerted on a point particle is proportional to its
acceleration. Since the force depends on the position of the particle, x appears in the
equation along with its second derivative, so that the equation is an ODE.

In general, ODEs can take various different forms, which makes the solution as well
as the whole field of study somewhat sophisticated. The general form of an (explicit)
ordinary differential equation is

F
(
t, y, y′, . . . , y(n−1)

)
= y(n)

where y = y(t) and y(n) denotes the n-th derivative of y with respect to the inde-
pendent variable t, which is often interpreted as time. The order n of the highest order
derivative appearing in the equation is called the order of the equation. If y is a vector
of functions and F is a vector valued function, a system of coupled differential equations
is specified, but we will mostly consider the special case of a single equation.

7

Most general-purpose programs for the numerical solution of ODEs expect first order
equations as in input so that for higher order equations an order reduction is necessary.
It is always possible to reduce an ODE of order n to an equivalent system of n first order
equations by introducing new functions for the derivatives:

y′1
y′2
...

y′n−1
y′n

 =


y2
y3
...
yn

F (t, y1, . . . , yn)


The order reduction process can be illustrated with Newton’s Second Law, a second

order equation. Introducing the two functions y1 = x and y2 = x′ (where x′ = v is the
velocity) yields the following first order system that can be solved using methods for
first order equations: (

x′

v′

)
=

(
v

F (t, x)/m

)
It is appropriate to sort general ODEs into various different classes of equations that

have special or interesting properties. Two of these classes are autonomous and linear
equations. For an autonomous equation, the function F on the left hand side of the
general form equation does not depend on t. If t represents time, these equations are
also called time-invariant systems. Intuitively, if the system that is modeled with an
autonomous equation produces an output o(t) for some input i(t), then for any shifted
input i(t + δ), it produces the shifted output o(t + δ). The system in the falling-ball
example is time-invariant because it doesn’t matter, at which point in time the ball has
been released. The position and velocity will change at the same rate for any starting
point of the fall. A linear equation is an equation for which the function F can be written
as a linear combination of the derivatives of y:

y(n) =

n−1∑
i=0

ai(t)y
(i) + r(t)

If r(t) = 0, a linear equation is called homogeneous, otherwise it is called inhomoge-
neous. Linear equations are well understood and have several special properties, regard-
ing for example their solution and determining the stability of their solutions.

Formally, a solution of a general n-th order equation is a function that is n times
differentiable and satisfies the equation. Such a solution can be defined on all of R, in
which case it is called a global solution, or only on some non-expandable interval, then
it is called a maximal solution. Without additional conditions, equations have a general
solution that contains a number of independent constants. This is because the equation
describes only the slope its solutions, not the actual values. A particular solution is
gained by setting the constants to specific values to fulfill additional conditions. For an
initial value problem, a particular solution is specified by a given initial value y(t0) = y0,

8

for a boundary value problem, conditions for more than one point are given, typically for
the endpoints of some time-interval. The model in the falling-ball example is an initial
value problem. Integrating the equations yielded a general solution. The particular
solution that satisfied the initial values was gained by setting the constants of integration
to appropriate values. Some but not all ODEs have solutions that can be written in exact
and closed form. There exist several techniques for their solution, for example direct
integration, separation of variables, using the Laplace transform and specialized methods
that apply to individual classes of equations. We won’t discuss these techniques in detail,
instead a simple example of an application of the separation-of-variables technique is
given in the following:

Consider the equation y′ = y. If y 6= 0 on its whole domain, we can write the equation
as y′/y = 1 so that the dependent variable y is separated on the left-hand side of the
equation and integration yields∫

y′

y
dt =

∫
1dt = t+ C.

Since an antiderivative of y′/y is ln |y|, we get

ln |y| = t+ C or y = ±eC · et

so that all solutions have the form y = Aet for some constant factor A 6= 0. For A = 0,
y = 0 is a solution. Given an initial value y(0) = y0, a particular solution y = y0e

t is
specified. The following plot shows the solutions for different initial values y0:

3.2 Initial Value Problems

As mentioned above, an initial value problem (IVP) is an ODE together with an initial
value y(t0) = y0 that specifies a particular solution. When modeling a system, one is

9

interested in a function y(t) that describes the state of the system as a function of time,
given the initial state of the system y0 and an ODE that determines its evolution. Since
most numerical methods only apply to first order equations and higher order equations
can always be reduced to first order systems, the following can be used as a standard
form of an IVP:

y′ = F (t, y), y(t0) = y0

where in the general case the left-hand part is a first order system and the right-
hand part specifies the initial values for the functions yi. Solvers also expect that F
is continuous in t in a region including y0 and that the partial derivatives ∂Fi/∂yj are
bounded there (Fi is Lipschitz-continuous in yj). Under these assumptions, the IVP has
a solution in that region and the solution is unique.

There are several issues that need to be taken into account when solving IVPs nu-
merically, one of them being the stability of the solutions of the differential equation.
Roughly speaking, the stability for an ODE reflects the sensitivity of its solutions to
perturbations of the initial value. An ODE is called unstable, if the solutions diverge
with time so that perturbations will grow. An example for an unstable ODE is the
equation y′ = y since the difference between the solutions is exponential in time and
thus the solutions rapidly move away from each other. Conversely, if the solutions of
an ODE converge with time, it is called stable. In this case, perturbations of the initial
value will be damped out with time. An example is the equation y′ = −y with solutions
y = Ae−t:

If the solutions are neither converging or diverging, the equation is said to be neutrally
stable. A formal definition of stability that can often be found in literature involves of
the Jacobian matrix Jf (t, y) which contains the partial differentials ∂Fi(t, y)/∂yj . The
stability of the corresponding equation can be determined based on certain properties of
the eigenvalues of Jf . Furthermore, the definition can be simplified for linear equations.

10

Another important and related property of differential equations is stiffness. A stable
ODE for which the solutions converge too rapidly is called stiff. Since some numerical
methods are very inefficient for stiff equations, they need to be treated with special care.
Examples will be provided in the following section.

3.3 Numerical Methods

Even in practice, there are many differential equations that need to be attacked numer-
ically because either an analytical solution does not exists or it would be too difficult or
inefficient to compute it. However, an approximation provided by a numerical method
is often good enough to solve a given problem and there are several theoretical concepts
that can be used to analyze and control the incurred error. The numerical methods con-
sidered in this presentation calculate a sequence of approximation values y1, y2, y3, . . .
for the solution y at consecutive points in time t0+h, t0+2h, t0+3h, . . . , where h is called
the step-size. The idea is to predict future values of y by simulating the behavior of the
system that is modeled by the differential equation and starts at the initial state y0.
These methods are sometimes referred to as discrete variable methods since the values
of the approximate solution are calculated step by step using discrete increments.

In stepping from one value to the next, the numerical method usually incurs some
error so that the new approximation value lies on a different solution of the differential
equation than the previous one. The stability of the equation has an influence on whether
such errors are magnified or diminished with time.

3.3.1 Euler’s Method

Euler’s method is probably the most simple and popular method for solving initial value
problems for ODEs. It is also a trivial case of more general techniques and can serve as
a starting point for the development of more advanced classes of methods. As a discrete
variable method, Euler’s method steps from one approximation value to the next and
generally lands on a different solution after each step. These solutions are called local
solutions. Consider the local solution un on which the approximation value yn lies and
its Taylor expansion around tn:

un(tn + h) = un(tn) + hu′n(tn) +
1

2
h2u′′n(tn) +O(h3)

Euler’s method uses the first two terms as an approximation for the value un(tn + h)
and computes the next approximation value yn+1 as

yn+1 = un(tn) + hu′n(tn)

= yn + hF (tn, yn)

since the derivative u′n(tn) is given by the differential equation as F (tn, un(tn)) =
F (tn, yn). Geometrically, Euler’s method starts at the initial value and takes small steps

11

along the tangent lines through the previous approximation values, as illustrated in
Figure 3.1. It can be seen that using a smaller step-size leads to a better approximation,
in fact, for any (useful) method, the numerical solution converges to the exact solution
as h → 0 so that a smaller step-size produces better approximation values, for the cost
of a greater number of computations. For Euler’s method, this behavior can easily be
verified by rearranging the stepping-rule to get

u′n(tn) =
un(tn + h)− un(tn)

h
.

The right-hand side is a differential quotient that converges to the left-hand side as
h→ 0 so that the method provides an exact solution in the limit.

Figure 3.1: Euler’s method applied to the IVP y′ = y, y(0) = 1 (exact solution in red)
using step-sizes h = 1 (green) and h = 0.5 (blue).

We will also try to apply Euler’s method to a stiff equation. The IVP y′ = −2.3y, y(0) =
1 will serve as an example. Figure 3.2 shows the result of the application of Euler’s
method with step-sizes h = 1 and h = 0.7. It can be seen that the numerical solution
for h = 1 oscillates and grows without bound. For h = 0.7, the solution converges but is
still relatively far off the exact solution. The stiffness of the differential equations forces
Euler’s method to use step-sizes that are much smaller than a step-size that would be
appropriate to the behavior of the solution.

3.3.2 Analysis

The following presents several concepts that can be used to evaluate the quality of
numerical methods. When using a numerical method, two different types of errors can

12

Figure 3.2: Euler’s method applied to the IVP y′ = −2.3y, y(0) = 1 (exact solution
in black) using step-sizes h = 1 (blue) and h = 0.7 (red). Source: http:

//en.wikipedia.org/wiki/File:Instability_of_Euler’s_method.svg

be incurred, rounding errors and truncation errors. Rounding errors are due to the finite
precision of floating-point arithmetic while truncation errors are due to the method itself
and would remain even if all arithmetic could be performed exactly. These two types of
errors are not independent since for example a smaller step-size reduces the truncation
error but also leads to a greater rounding error. However, in practice the truncation
error is usually the dominant type of error. It can be further broken down into the

• Global truncation error
en = yn − y(tn)

which is the difference between the computed solution and the true solution which
is passing through the initial value

and the

• Local truncation error
ln = yn − un−1(tn)

which is made by a single step of the method, where un−1 is the local solution
which is passing through the previous approximation value yn−1.

The global error is not necessarily equal to the sum of the local errors. For an unstable
equation the global error is generally grater than the sum of the local errors since the
solutions move away from each other and thus the local errors are magnified. What we
want for a method is a small global error, but only the local error can be controlled
directly, for example by reducing the step-size.

13

How much the local error decreases with the step-size for a certain method is depicted
by its order. A method has order p if

ln = O(hp+1)

which means that if the step-size is halved, the local truncation error that is incurred
in one step of the method is divided by a number that has a magnitude of 2p+1. Euler’s
method for example has order 1 which can be shown by comparing the approximation
value that is computed in one step with the exact local solution given in the form of a
Taylor series.

Similarly to the concept of stability for differential equations, stability can be defined
for numerical methods. Intuitively, a method is said to be stable if it produces stable
solutions so that errors are not magnified. In the previous example, we have seen that
Euler’s method can produce unstable solutions for stiff equations if the step-size is too
large. In general, the stability of a method does not only depend on the stability of
the equation being solved but also on the method itself and the step-size being used.
Even a high-order method can produce large global errors when it has a low stability. In
literature, the term ’stability’ is not clear-cut, several different definitions can be found.

3.3.3 Generalizations

Euler’s method is often not accurate enough for practical applications due to its low
order and stability issues. There are several approaches for developing more accurate
methods based on Euler’s method of which the following attempts to give a brief survey,
starting with the Backward Euler method.

The Backward Euler method differs from Euler’s method in that it evaluates the func-
tion F at the end of the time-step interval and not at the beginning. Exchanging
F (tn, yn) with F (tn+1, yn+1) leads to

yn+1 = yn + hF (tn+1, yn+1).

Since yn+1 appears on both sides of the equation, the Backward Euler method needs
to solve an algebraic equation. For non-trivial cases, standard iterative solution methods
like Fixed-point iteration or Newton’s method can be used. A starting guess for an iter-
ative method can be obtained by computing a step with an explicit method or simply by
using a previous approximation value. The Backward Euler method has the same order
as Euler’s method and it is not obvious why using information at time tn+1 and solving
an algebraic equation provides a better solution, but it turns out that the Backward
Euler method has better stability characteristics and is effective for stiff equations.

The Backward Euler method is an example of an implicit method. Explicit methods,
like Euler’s method, use information at time tn to compute the solution at time tn+1.
Implicit methods use information at time tn+1 and thus need to evaluate F with the
argument yn+1 before its value is known which leads to the solution of an algebraic
equation. The approximation value yn+1 that is to be computed is only given implicitly

14

as the solution of the algebraic equation, hence the name. Implicit methods are generally
more stable than comparable explicit methods.

Upon reaching time tn, a numerical method has already computed several values
yn, yn−1, . . . and F (tn, yn), F (tn−1, yn−1), It can be shown that these values can be
exploited to construct higher-order methods, different classes of methods can be defined
based on how these values are combined. Inside a class the methods differ in how many
previous values they use to compute the next approximation value. In general, the
more previous values are used, the higher the order of the method. Important classes
of methods are the implicit Backward Differentiation Formulas, the explicit Adams-
Bashforth methods, the implicit Adams-Moulton methods and the explicit and implicit
Runge-Kutta methods. The Euler method is included in all of the mentioned classes of
explicit methods as a trivial case, similarly the Backward Euler method is a trivial case
of all the mentioned implicit methods.

We will close our survey of numerical methods by presenting two additional methods
that can also be sorted into the classes mentioned above, the Trapezoidal rule and Heun’s
method, along with an example.

The Trapezoidal rule is an implicit second order method that can be considered as
both an implicit Runge-Kutta method and an Adams-Moulton method. It can be viewed
as a combination of the Euler and Backward Euler methods since it uses the average of
their respective slope estimates:

yn+1 = yn +
h

2
(F (tn, yn) + F (tn+1, yn+1))

A starting guess for yn+1 can be provided by an explicit method and be corrected with
the implicit formula, either repeatedly (a Fixed-point iteration) or a fixed number of
times. Together, the two methods are called a predictor-corrector pair. When correcting
to convergence, the predictor plays only a very small role and thus the order and stability
characteristics of the predictor-corrector pair are that of the corrector. If the predicted
value is corrected only a fixed number of times, the order and stability characteristics of
both methods have an influence and the analysis is more complicated.

An example of a predictor-corrector pair is Heun’s method which results from predict-
ing with Euler’s method and correcting once with the Trapezoidal rule:

pn+1 = yn + hF (tn, yn)

yn+1 = yn +
h

2
(F (tn, yn) + F (tn+1, pn+1))

Performing a single correction step amounts to an explicit method of order 2.
The following example compares the performance of the implicit Trapezoidal rule

with that of the explicit Euler method for a stiff equation. Consider the IVP y′ =
−15y, y(0) = 1 with the exact solution y(t) = e−15t. Figure 3.3 shows two solutions
that were computed by Euler’s method using step-sizes h = 1/4 and h = 1/8 and one
solution that was computed by the Trapezoidal rule using a step-size of h = 1/8. Euler’s
method exhibits its typical unstable behavior, even when the step-size is halved, while

15

the Trapezoidal rule provides a much better result that is relatively accurate even in the
region near the initial value.

Figure 3.3: The exact solution of the IVP y′ = −2.3y, y(0) = 1 (cyan) and nu-
merical solutions computed by Euler’s method using step-sizes h = 1/4
(red) and h = 1/8 (green) and by the Trapezoidal rule using a step-
size of h = 1/8 (blue). Source: http://en.wikipedia.org/wiki/File:

StiffEquationNumericalSolvers.svg

3.3.4 Adaptive Step-size

Until now, all numerical methods used a constant step-size h. However, it is appropriate
to use a different size for each step to ensure stability or keep the local error below some
tolerance level that can be specified by the user. In some regions of the solution, the
step-size needs to be reduced to ensure stability or accuracy while in other regions, the
step-size can be increased to save computation time. An example for a method that
achieves the accuracy goal is the Runge-Kutta-Fehlberg method RKF45 which produces
a 5th- and a 4th-order estimate for the approximation value and uses the difference as
an estimate for the local error. The step-size is then adapted to the error estimate.
The standard function for solving initial value problems for ODEs in MATLAB and
OCTAVE, ode45, is an implementation of the RKF45 method.

16

4 Application: N-body Simulations

For the sake of illustrating the basic concepts presented in the previous sections, their
application is demonstrated for gravitational N-body simulations, a widely used tool
in astrophysics. This section is also inspired by a project on which the author worked
during the last summer semester together with Marcel Lebek.

The gravitational N-body problem is the problem of predicting the motion of N grav-
itationally interacting particles. Its applications range from systems of few bodies to
solar systems and even systems of galactic and cosmological scale. We will use the N-
body problem to model our solar system, considering the Sun, the eight inner and outer
planets and the dwarf-planet Pluto, so that in our case N = 10.

4.1 Model

The mathematical formulation of the gravitational N-body problem can be obtained by
simply combining two physical laws from classical mechanics, Newton’s Law of Universal
Gravitation and Newton’s Second Law of Motion, to get the following second order
system:

ai = x′′i = G ·
∑
j 6=i

mj(xj − xi)
‖xj − xi‖3

(i = 1, . . . , N)

which consists of 3N equations, one per body and spatial coordinate, where initial
values for the positions xi and the velocities vi are given. Notice that the equations are
coupled, because the acceleration ai depends on the positions of all bodies. This needs to
be taken into account when solving the system. The formulation of the N-body problem
in terms of ordinary differential equations is possible because the bodies are treated as
point particles. It has already been published by Isaac Newton in his famous Principia
in 1687. The problem has been completely solved for N = 2, for N = 3, solutions
exist for special cases. However, no practical analytical solution for the general case
is known until today and thus the problem is usually solved using numerical methods.
Since the presented methods only apply to first order equations, we will need to reduce
the system to a first order system, before we can solve it. In the previous section, the
order reduction process has already been demonstrated for Newton’s Second Law, so we
can just adopt the result to obtain the first order system

17

x′i = vi (i = 1, . . . , N)

v′i = ai = G ·
∑
j 6=i

mj(xj − xi)
‖xj − xi‖3

(i = 1, . . . , N)

which consists of now 6N equations.

4.2 Simulation

Since we cannot solve our solar system model analytically, we will simulate it using
a numerical method, for simplicity, Euler’s method. Initial values for the positions
xi and the velocities vi of the bodies considered in our model can be obtained from
http://ssd.jpl.nasa.gov/?horizons. Starting with the initial values, Euler’s method
computes a series of approximations for the positions and velocities of all bodies, the
values after a time-step of length h are given by

xi(tn + h) = xi(tn) + hvi(tn) and

vi(tn + h) = vi(tn) + hai(tn).

A solver can easily be implemented in a programming language of choice and the
obtained approximation values can be used for further calculations or visualization.
Figure 4.1 shows the trajectories of the inner planets over a time interval of one year
which have been computed with Euler’s method using 1000 time-steps per day. To obtain
stable orbits, we were forced to use a very small step-size which makes the simulation
computationally inefficient and increases the influence of rounding errors. In practice,
one would use more elaborate methods which are closer to the nature of the problem
to guarantee accuracy and efficiency. Individual techniques exist for the use in different
astrophysical domains. An overview is provided by [HT08].

18

F
ig

u
re

4
.1

:
T

ra
je

ct
or

ie
s

of
th

e
in

n
er

p
la

n
et

s
ov

er
a

ti
m

e
in

te
rv

al
of

on
e

ye
a
r,

co
m

p
u

te
d

w
it

h
E

u
le

r’
s

m
et

h
o
d

u
si

n
g

10
00

ti
m

e-
st

ep
s

p
er

d
ay

.

19

5 Conclusion

In the course of this presentation, the basic concepts for the modeling and simulation of
continuous and lumped systems have been introduced. The considered class of systems
can be modeled with ordinary differential equations and simulated in some cases by
computing analytical solutions, otherwise by computing an approximate solution using
numerical methods. The focus was shifted on the numerical solution of initial value
problems for ordinary differential equations where an initial state of the system is given
in terms of an initial value for the ODE, which determines the evolution of the system,
and the solution function y(t) of the ODE, which describes the state of the system as a
function of time, is sought.

Discrete variable methods approximate y by a finite sequence of approximation values
y1, y1, y3, . . . starting from the initial value y0. These methods can incur different kinds
of errors and can be evaluated according to their order and stability characteristics.
Many different methods exist, of which several classes have been mentioned and some
concrete methods have been presented and compared to each other in examples. In
general, higher order methods provide better accuracy but when dealing for example
with stiff ODEs, a high order alone cannot ensure a low error. In this case, implicit
methods like Backward Differentiation Formulas or Adams-Moulton methods should be
employed. Most of the available solvers also vary the step-size being used according to
the behavior of the solution to ensure accuracy and stability on one hand and to save
computation time on the other hand. In conclusion, it can be said that the choice of an
appropriate method for a given problem is crucial for a successful application. Beyond
the standard methods, individual numerical techniques exist for solving problems in
specific contexts.

20

Bibliography

[AA08] Samir Al-Amer. Lecture notes for se207: Modeling and simu-
lation. http://faculty.kfupm.edu.sa/SE/samirha/SE207_072/SE207_

March2008.htm, 2008.

[But08] John C. Butcher. Numerical Methods for Ordinary Differential Equations.
John Wiley & Sons, 2008.

[Dia96] Florin Diacu. The solution of the n-body problem. The Mathematical Intelli-
gencer, 18, No. 3:66–70, 1996.

[Gor03] Dimitry Gorinevsky. Lecture notes for ee392m: Control engineering meth-
ods for industry. http://www.stanford.edu/class/archive/ee/ee392m/

ee392m.1034/Lecture2_Models.pdf, Winter Quarter 2002-2003.

[Hea97] M.T. Heath. Scientific computing: an introductory survey. McGraw-Hill series
in computer science. McGraw-Hill, 1997.

[Hea02] Michael T. Heath. Lecture notes for ’scientific computing: An introductory
survey’. http://cse.web.cs.illinois.edu/heath/scicomp/notes/index.

html, 2002.

[HT08] Piet Hut and Michele Trenti. N-body simulations (gravitational). Scholarpe-
dia, 3(5):3930, 2008.

[TS07] S. Thompson and L. F. Shampine. Initial value problems. Scholarpedia,
2(2):2861, 2007.

[Wik13a] Wikipedia. Continuous simulation — wikipedia, the free encyclopedia, 2013.
[Online; accessed 31-March-2013].

[Wik13b] Wikipedia. Numerical methods for ordinary differential equations —
wikipedia, the free encyclopedia, 2013. [Online; accessed 31-March-2013].

[Wik13c] Wikipedia. Ordinary differential equation — wikipedia, the free encyclopedia,
2013. [Online; accessed 31-March-2013].

21

