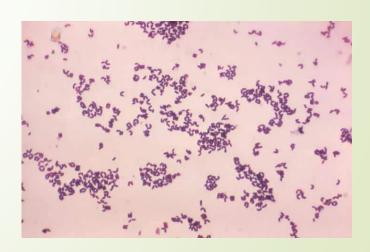

### TP N°4: Tinción

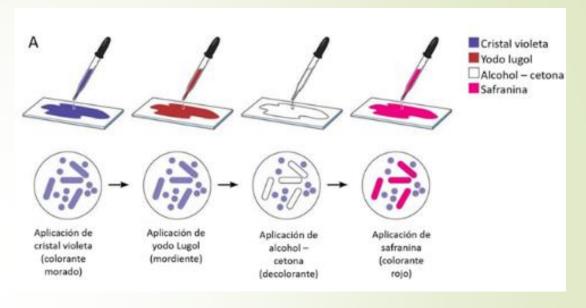
- Es el proceso por el cual las moléculas de un colorante se adsorben a una superficie.
- El uso de colorantes permite cambiar el color de las células de los microorganismos y poder realizar la observación en microscopio óptico.
- Las bacterias son incoloras, requieren algún tratamiento previo para observarlas.

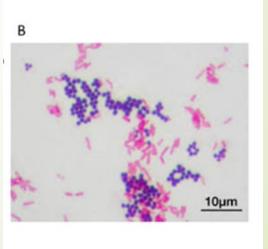




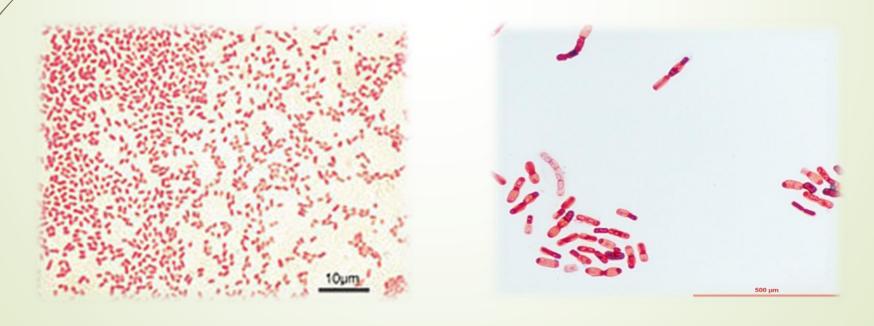

# Tipos de tinción

■ Tinción simple: El colorante utilizado sirve solo para denotar la morfología celular. En general se usa para la observación de hongos filamentosos.

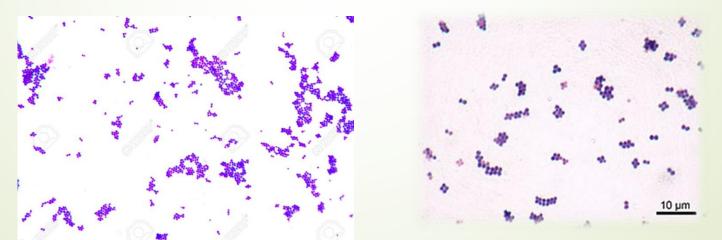


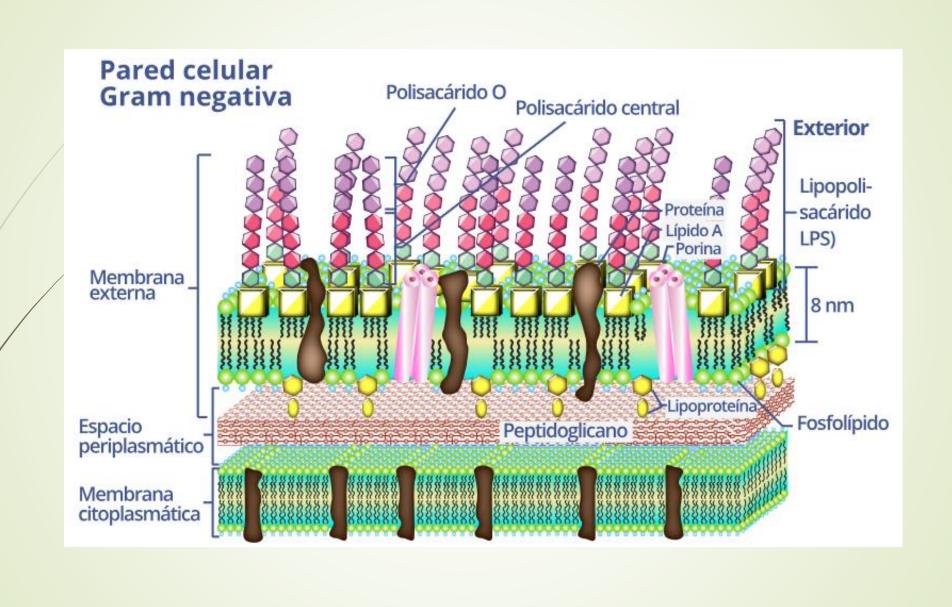


Tinción diferencial: El colorante utilizado pone de manifiesto diferencias entre células bacterianas o entre partes de una misma célula. Estas técnicas utilizan más de un colorante o bien ciertos reactivos complementarios para la tinción. Ejemplos: Tinción de Gram, Tinción de Ziehl-Neelsen, etc. Principalmente para bacterias.

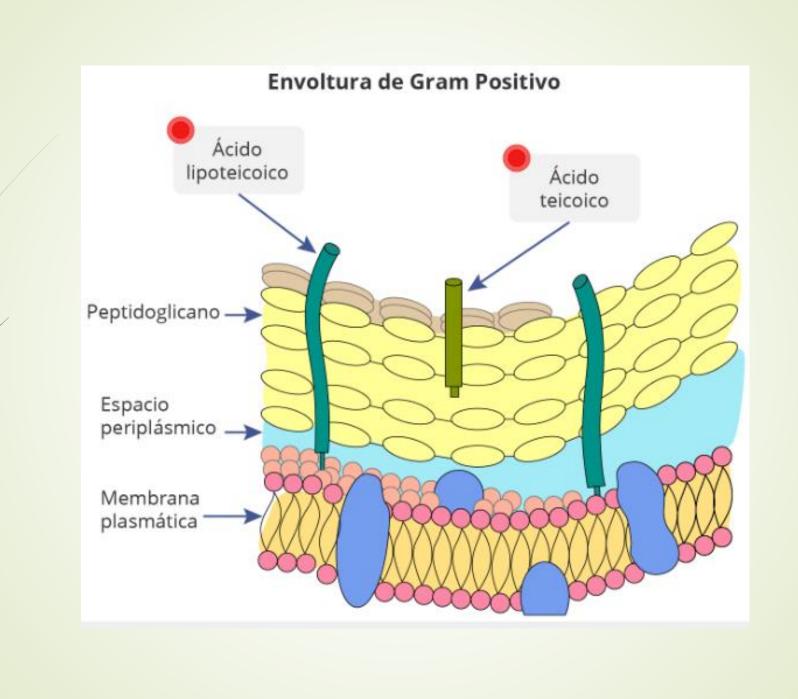



### Tinción diferencial de Gram:

- De acuerdo a la reacción a la tinción de Gram, las bacterias pueden dividirse en grampositivas y gramnegativas.
- La tinción de Gram se basa en las características de la pared celular de las bacterias, que le confiere propiedades determinantes a cada microorganismo.
- La pared celular de las bacterias Gram negativas está constituida por una capa fina de peptidoglucano y una membrana celular externa.

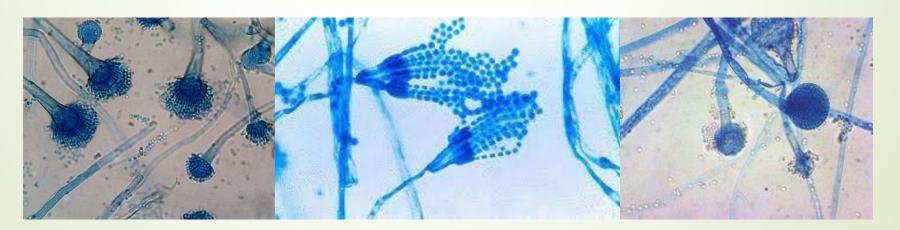




- Al hacer actuar el primer colorante (violeta cristal) y el mordiente (lugol) el complejo que se forma queda retenido en la capa externa.
- Cuando se agrega el decolorante (alcohol) este disuelve la capa de lipopolisacaridos juntamente con el colorante.
- Al agregar el segundo colorante (safranina) este penetra en la capa basal y es retenido observándose el microorganismo color rosado (con la safranina).



- Las GRAM (+) presentan pared celular gruesa y una capa basal de peptidoglucano que ocupa el 90% de la pared unida a ácidos teicoicos y presentan poros transmembranales (porinas). No cuentan con membrana celular externa.
- Cuando penetra el primer colorante (violeta cristal) más el mordiente (lugol) se forma un complejo insoluble de la pared celular.
- Cuando se hace actuar el decolorante (alcohol) la pared celular se deshidrata y se produce el cierre de los poros evitando la salida del colorante.
- Por lo tanto cuando se hace actuar el segundo colorante (safranina) este no ingresa. De esta manera la bacteria se tiñen de violeta.





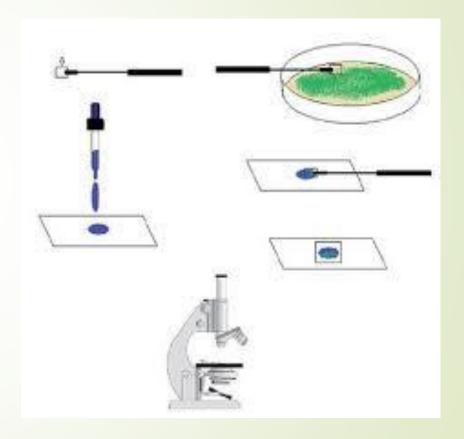



## Tinción con azul de algodón o de lactofenol

- No es considerada una tinción diferencial, sin embargo, permiten observar cada uno de los componentes fúngicos y apreciar fácilmente las estructuras para una adecuada identificación.
- El fenol inactiva las enzimas líticas de la célula, destruye la flora acompañante y actúa como mordiente cuando se usa en combinación con colorantes.
- El ácido láctico preserva las estructuras fúngicas al provocar un cambio de gradiente osmótico con relación al interior fúngico, lo que genera una película protectora.
- El azul de algodón es un colorante ácido, que tiñe el citoplasma y la quitina presente en las células fúngicas, mientras que el glicerol mantiene húmeda la preparación.



# **Endosporos**


- Son una forma de resistencia producida por algunas bacterias, en una etapa de su ciclo de vida.
- Aseguran la supervivencia de las bacterias en condiciones desfavorables (altas T°, desecación, radiaciones ultravioletas, gamma y agentes químicos), durante largos periodos de tiempo.
- Varios géneros son capaces de producir estas estructuras: Clostridium, Bacillus, entre otros.
- Las esporas se dispersan fácilmente por el aire, en condiciones nutricionales germina y reanuda su actividad metabólica.
- La morfología y disposición de la endospora en el interior del microorganismo tiene valor taxonómico, la mayoría presentan una disposición central o subterminal.



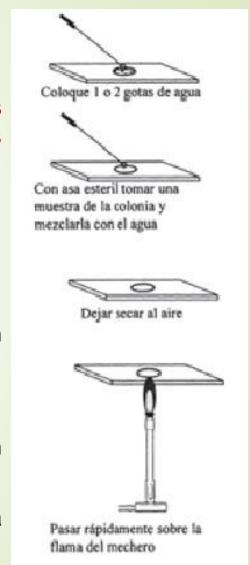
| Disposición de<br>la endospora |  |
|--------------------------------|--|
| Central                        |  |
| Subterminal                    |  |
| Deformante                     |  |

## Procedimiento para coloración simple

- 1. Poner el portaobjetos una gota del colorante azul de lactofenol o fuscina posteriormente colocar una alícuota de muestra sobre el colorante y cubrirlo con un cubreobjetos
- 2. Llevar el portaobjetos a la platina de un microscopio.
- 3. Mirar a través del objetivo de bajo aumento (10x) y una vez enfocado el objeto colocar el objetivo en 40x para hongos y en objetivo de inmersión en aceite (100x) para bacterias.
- 4. Ajustar el enfoque mediante el tornillo micrométrico.
- 5. Regular la cantidad de luz por medio del diafragma.
- 6. Dibujar lo observado manteniendo la proporción respecto al campo microscópico.

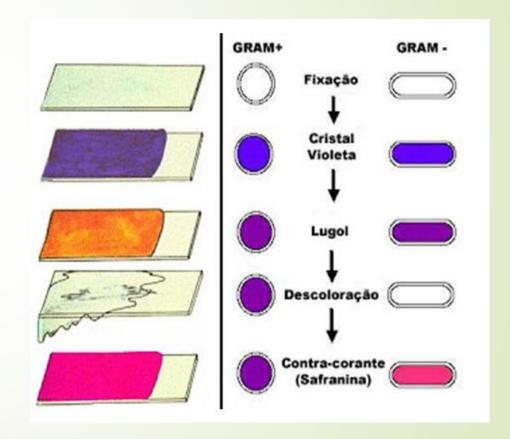


#### Procedimiento de coloraciones diferenciales


#### Fijación de las bacterias para la tinción

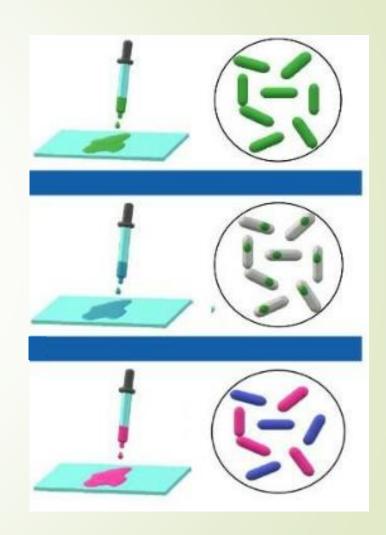
Antes de teñir, se debe "fijar" el material. El propósito de la fijación es matar los microorganismos, coagular el protoplasma de la célula y adherirla al portaobjetos en el cual se va a teñir.

Se puede fijar por calor o formaldehido, metanol o ácidos.


#### **Procedimiento**

- 1. Cop un asa de siembra coloque una gota de agua en portaobjeto limpio.
- 2. Se coloca una pequeña gota de agua en el portaobjetos y se mezcla bien con un poco de la suspensión.
- 4. Seque los portaobjetos al aire o manteniéndolos altos encima de la llama de un mechero Bunsen.
- 5. Cuando se haya secado el frotis, pase el portaobjetos tres a cinco veces por la llama del Bunsen con la capa hacia arriba.




# Tinción de Gram

- Realizar un frotis y fijar la muestra a observar
- Poner el portaobjetos sobre un soporte y cubrirlo con una solución de violeta cristal y dejar actuar por (1) un minuto
- Lavar con agua
- Posteriormente agregar el lugol y dejar actuar por (1) un minuto
- Lavar con agua
- Cubrir la muestra con alcohol 96º, durante 15 o 30 segundos, luego lavar con agua
- Por ultimo agregar la safranina, por 1 minuto.
- Lavar con agua, secar y observar a 100X con aceite de inmersión.



# Coloración de endosporos

- 1. Realizar un frotis y fijar la muestra a observar
- 2. Cubrir el extendido con solución de verde de malaquita
- 3. Encender un hisopo embebido en alcohol y calentar el portaobjetos por debajo del soporte. Apagar y repetir la operación luego de un minuto
- 4. Repetir el calentamiento dos veces más. El calor modifica la permveabilidad de la endospora y permite la entrada del colorante a través de las capas externas.
- 5. Lavar con agua. El lavado con abundante agua produce la decoloración de las formas vegetativas así como de los extremos de las bacterias esporuladas.
- 6. Cubrir con solución de safranina (colorante de contraste) durante 1 minuto
- 7. Lavar con agua y secar
- 8. Colocar una gota de aceite para inmersión
- 9. Dibujar lo observado

