FACULTAD DE INGENIERIA UNJu	OPERACIONES UNITARIAS I	2024

PROBLEMA 1

Se utiliza un filtro abierto de arena para tratar una corriente de agua de pozo disponible a 20°C. El filtro está constituido con un lecho de 3 pies de altura con arena malla -20+28 en escala Tyler y esfericidad estimada de 0.9. El agua permanece con 2 pies de profundidad sobre la parte superior de la arena.

Determinar la velocidad máxima de flujo a través del lecho que se presenta al iniciar el ciclo de filtración.

PROBLEMA 2

Un proceso industrial requiere procesar una suspensión acuosa a 30°C con un contenido de sólido de 300 kg de solido seco por m³ de filtrado en un filtro prensa de placas y marcos a una caída de presión de 67 kPa. El tiempo de ciclo que realmente opera es 45 minutos, seguido posteriormente de 15 minutos de limpieza. La compañía determina que 8.5 m³ de filtrado puede ser producido bajo las condiciones descritas.

Ensayos a nivel de planta piloto han determinado que $\alpha = 4.37 \cdot 10^9 \ (-\Delta P)^{0.3}$, $-\Delta P$ y α están en el sistema internacional de unidades.

- a) Calcule el área requerida.
- b) Si la concentración de la suspensión incrementa al doble, aun con el mismo volumen de filtrado ¿Cuál debe ser la caída de presión para mantener el mismo tiempo de ciclo?
- d) Determine el número de marcos necesarios.

PROBLEMA 3

En una planta de producción se desea llevar a cabo la filtración, a 20°C, de una suspensión de CaCO₃ cuya concentración de sólidos es 6.6 % m/m a una caída de presión constante de 2 atm en un filtro prensa modelo FP-1500 de 25 placas.

Se realiza ensayos de filtración a escala piloto de la suspensión con diferencias de presión variables y 20°C en un filtro cuya área de filtración es del 200 cm². Los resultados obtenidos de volumen de filtrado en función del tiempo se muestran en la tabla adjunta. Mediante las determinaciones experimentales, se sabe que: la densidad de la torta es de 1.60 kg/m³, la densidad del carbonato de calcio sólido de 2.93 kg/m³, la humedad de la torta es del 10%, el filtrado puede considerarse esencialmente agua pura.

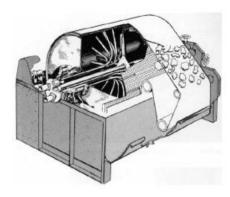
ΔP	V	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
2.0	t	2.6	5.1	8.5	12.1	16.2	21.4	27.5	34.2	41.8	49.5	58.6	68.0	78.1	89.5	101.8
1.5	t	2.9	5.7	9.5	13.7	18.5	24.5	31.7	39.2	48.2	57.0	67.2	78.2	89.8	103.2	117.0
1.0	t	3.3	6.5	10.8	15.9	21.2	28.1	36.2	45.1	55.1	65.5	77.2	89.8	103.1	118.2	134.5
0.5	t	3.5	7.3	12.4	17.8	24.3	32.1	41.5	51.7	63.4	75.1	88.7	103.1	118.5	135.8	154.5

 \overline{V} (litros), t (segundos) y ΔP (kgf/cm²)

FACULTAD DE INGENIERIA UNJu	OPERACIONES UNITARIAS I	2024

Considerar una eficiencia de filtración completa.

- a) Determinar los parámetros de filtración.
- b) Calcular el área total de filtración en el equipo.
- c) Determinar el volumen de suspensión, de las características indicadas, que debería tratarse en el filtro disponible para obtener una torta del 80% del espesor total admisible en las placas.
- d) Evaluar el tiempo en llevarse a cabo un ciclo de operación, considerando un tiempo de lavado-estrujado de torta de 30 min, lavado de filtro de 1.5 h y un tiempo de descarga-preparación de 1.2 h.


PROBLEMA 4

Se quiere obtener 80 t/día de CaCO₃ de un proceso de recuperación en una planta de celulosa, mediante el empleo de un filtro rotativo de vacío, que opera con una caída de presión constante de 2 kgf/cm² y una velocidad de 1 rpm. Para ello el filtro se alimenta con una suspensión con las características descritas en el PROBLEMA 3.

El equipo tiene una fracción de área efectiva de 18%. La temperatura de la operación es de 20°C, y el licor débil puede considerarse esencialmente agua pura.

Considere un factor de ensuciamiento de 0.80.

- a) Determine el área de filtración y dimensione el equipo.
- b) Calcule el caudal de licor débil filtrado y el volumen de filtrado que se obtiene por giro de tambor.
- c) Determine el espesor de la torta obtenida.
- d) Evaluar la capacidad del filtro.
- e) En la puesta en marcha, ¿cuál debería ser la velocidad del tambor?

