FACULTAD DE INGENIERIA UNJu	OPERACIONES UNITARIAS I	2024

PROBLEMA 1

Para abastecer el sector de calderas de una planta industrial con agua ablandada a partir de agua filtrada a 20°C se emplea un intercambiador iónico que opera según las condiciones descritas a continuación:

Condiciones operativas de la planta de tratamiento con marcha normal:

- Caudal de agua de alimentación: 180 m³.hr⁻¹.
- La velocidad del agua en el interior de los equipos ablandadores será del 75% de la velocidad para el comienzo de la fluidización (determinada con el fluido de regeneración).

Condiciones operativas para la regeneración de la resina:

- La operación se realizará en lecho fluidizado con una solución de salmuera (NaCl). Densidad salmuera: 1.10 g.cm⁻³; Viscosidad salmuera: 2.1 cp.
- La velocidad de fluidización será 50% menor que la velocidad de arrastre del lecho (determinada con el fluido de regeneración).

Características de la resina para el lecho:

- Partículas cilíndricas: 1 mm de diámetro y 2 mm de longitud
- Densidad de la resina: 1.5 g.cm⁻³.
- Relación de masa: 75 kg de resina por caudal (m³.hr¹) de agua a procesar.
- a) Diseñar el intercambiador iónico y calcular la cantidad necesaria de resina para llevar a cabo el proceso.
- b) Calcular la velocidad intersticial y la velocidad superficial de operación.
- c) Determinar la caída de presión en cada instancia (ablandamiento y regeneración), y la expansión del lecho en cada caso.
- d) Indicar el campo de existencia del lecho.

FACULTAD DE INGENIERIA UNJu	OPERACIONES UNITARIAS I	2024
ONGU		

PROBLEMA 2

En un proceso de producción es necesario realizar la remoción boro de una solución mediante el uso de una columna de intercambio iónico. La resina seleccionada para el proceso es Purolite TM S108.

La solución ingresa a razón de 40 m³.hr⁻¹ con una concentración en boro de 1500 ppm en peso. A la temperatura de operación la solución tiene una viscosidad de 1.16 cp y una densidad de 1000 Kg.m⁻³. La especificación de la corriente de salida es 30 ppm en Boro. Durante la operación se trabaja en la columna de intercambio iónico con una tasa de servicio de 5 BV.hr⁻¹ y una velocidad de 10 m.hr⁻¹.

Actividades:

- a) Represente el diagrama de flujo de proceso.
- b) Especifique el sistema completo para obtener una operación continua.

El proveedor de la resina de intercambio iónico suministra la siguiente distribución para las etapas de regeneración:

Etapa de	Fluido	Flujo	Tiempo
regeneración		(BV.hr ⁻¹)	(min)
Desplazamiento	Agua desmineralizada	3	15
Retrolavado	Agua desmineralizada	9	20
Regeneración	Solución de HCl (8%) 160 g HCl.L ⁻¹ resina	3	60
Enjuague	Agua desmineralizada	3	45
Conversión sódica	Solución NaOH (4%) 100 g NaOH.L ⁻¹ resina	3	60
Enjuague	Agua desmineralizada	3	40