

TÉCNICAS Y ESTRUCTURAS DIGITALES

Práctica de Funciones Canónicas

¿Qué es una función canónica?

- Una función canónica es una función lógica formada por términos canónicos.
- Los términos canónicos pueden corresponder a sumas de productos (minitérminos) o a productos de sumas (maxitérminos).

$$A \cdot \overline{B} \cdot C \dots + \overline{A} \cdot B \cdot \overline{C} \dots + \dots + A \cdot B \cdot C \dots$$
 minitérminos $(A + \overline{B} + C + \dots) \cdot (\overline{A} + B + \overline{C} + \dots) \cdot \dots \cdot (A + B + C + \dots)$ maxitérminos

- En cada término de una función canónica deben aparecer todas las variables de la función ya sea que se presenten directas o negadas.
- Para cualquier función lógica es posible encontrar la equivalente función canónica.

Teorema de Existencia de Funciones Canónicas (1)

- Toda función lógica puede expresarse como una función canónica de tipo suma de productos ($\Sigma\Pi$) o producto de sumas ($\Pi\Sigma$).
- Por ejemplo: dada la función $F(a,b,c)=(a+\overline{b\cdot c})\oplus b$

	a	b	C	F
1	0	0	0	1;
1	_0	0	1_	1;
	0	1	0	0
\ '	0	1	1	1;
	1	0	0	1 ¦
1	1	0	1	1;
	1	1	0	0
	1	1	1	0

Formato ∑∏

1: Variable Directa – 0: Variable Negada

$$F(a,b,c) = \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot F(0,0,0) + \overline{a} \cdot \overline{b} \cdot c \cdot F(0,0,1) + \overline{a} \cdot b \cdot \overline{c} \cdot F(0,1,0) + \overline{a} \cdot b \cdot c \cdot F(0,1,1) + a \cdot \overline{b} \cdot \overline{c} \cdot F(1,0,0) + a \cdot \overline{b} \cdot c \cdot F(1,0,1) + a \cdot b \cdot \overline{c} \cdot F(1,1,0) + a \cdot b \cdot c \cdot F(1,1,1)$$

$$F(a,b,c) = \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot \mathbf{1} + \overline{a} \cdot \overline{b} \cdot c \cdot \mathbf{1} + \overline{a} \cdot b \cdot \overline{c} \cdot \mathbf{0} + \overline{a} \cdot b \cdot c \cdot \mathbf{1} + a \cdot \overline{b} \cdot \overline{c} \cdot \mathbf{1}$$

$$F(a,b,c) = \overline{a} \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot b \cdot c + a \cdot \overline{b} \cdot \overline{c} + a \cdot \overline{b} \cdot c$$

Teorema de Existencia de Funciones Canónicas (2)

- Toda función lógica puede expresarse como una función canónica de tipo suma de productos ($\Sigma\Pi$) o producto de sumas ($\Pi\Sigma$).
- Por ejemplo: dada la función $F(a,b,c)=(a+\overline{b\cdot c})\oplus b$

	a	b	C	F
	0	0	0	1
	0	0	1	1
	0	1	0	0
	0	1	1	1
	1	0	0	1
	1	0	1	1
1	1	1	0	0)
	1	1	1	0

Formato ∏∑

0: Variable Directa – 1: Variable Negada

$$F(a,b,c) = (a+b+c+F(0,0,0)) \cdot (a+b+\bar{c}+F(0,0,1)) \cdot (a+\bar{b}+c+F(0,1,0)) \cdot (a+\bar{b}+\bar{c}+F(0,1,1)) \cdot (\bar{a}+b+c+F(1,0,0)) \cdot (\bar{a}+b+\bar{c}+F(1,0,1)) \cdot (\bar{a}+\bar{b}+c+F(1,1,0)) \cdot (\bar{a}+\bar{b}+\bar{c}+F(1,1,1))$$

$$F(a,b,c) = (a+b+c+1) \cdot (a+b+\overline{c}+1) \cdot (a+\overline{b}+c+0) \cdot (a+\overline{b}+\overline{c}+1) \cdot (\overline{a}+b+c+1) \cdot (\overline{a}+b+\overline{c}+1) \cdot (\overline{a}+\overline{b}+c+0) \cdot (\overline{a}+\overline{b}+\overline{c}+0)$$

$$F(a,b,c) = (a + \overline{b} + c) \cdot (\overline{a} + \overline{b} + c) \cdot (\overline{a} + \overline{b} + \overline{c})$$

Formato de Funciones Canónicas

- Algebraico
 - Suma de Productos $F(w, x, y, z) = w \cdot \bar{x} \cdot y \cdot \bar{z} + \bar{w} \cdot \bar{x} \cdot y \cdot z + w \cdot x \cdot y \cdot z$
 - Producto de Sumas $F(a,b,c) = (\bar{a}+b+\bar{c})\cdot(\bar{a}+\bar{b}+c)\cdot(a+\bar{b}+c)\cdot(a+b+\bar{c})$
- Numérico
 - Suma de Productos $\sum_{4}(3, 10, 15)$
 - Producto de Sumas $\prod_3(1,2,5,6)$

Leyes del Álgebra Binaria (recordatorio)

- Tautología
 - $A \cdot 1 = A$
 - A + 0 = A
- Complemento

•
$$A \cdot \overline{A} = 0$$

$$A + \overline{A} = 1$$

- Distributiva
 - $A \cdot (B + C) = A \cdot B + A \cdot C$ (producto respecto suma)
 - $A + B \cdot C = (A + B) \cdot (A + C)$ (suma respecto a producto)

Formato Algebraico (1)

- Por Método Algebraico
 - Consiste en aplicar convenientemente las leyes del álgebra binaria para obtener el formato canónico deseado.
 - Por ejemplo: dada la función $F(A,B,C)=(\overline{A}+C)\cdot \overline{A\cdot \overline{B}+C}$ obtenga, algebraicamente, el formato $\Sigma \prod$

$$F(A,B,C) = \overline{\overline{A} + C} + \overline{\overline{A} \cdot \overline{B} + \overline{C}}$$
 De Morgan

$$F(A, B, C) = \overline{\overline{A}} \cdot \overline{C} + A \cdot \overline{B + C}$$
 De Morgan e Involución

$$F(A, B, C) = A \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C}$$
 Involución y De Morgan

Pseudocanónica

$$F(A,B,C) = A \cdot 1 \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C}$$
 Tautología

$$F(A,B,C) = A \cdot (B + \overline{B}) \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C}$$
 Complemento

$$F(A,B,C) = A \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C}$$
 Distributiva (producto respecto a suma)

$$F(A,B,C) = A \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C}$$
 Idempotencia

Formato Algebraico (2)

Por ejemplo: dada la función $F(A,B,C)=(\overline{A}+C)\cdot \overline{A\cdot \overline{B}+C}$ obtenga, algebraicamente, el formato $\prod \Sigma$

$$F(A,B,C) = \overline{\overline{A} + C} + \overline{\overline{A} \cdot \overline{B} + \overline{C}}$$
 De Morgan

$$F(A,B,C) = \overline{\overline{A}} \cdot \overline{C} + A \cdot \overline{B+C}$$
 De Morgan e Involución

$$F(A,B,C) = A \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C}$$
 Involución y De Morgan

Pseudocanónica

$$F(A,B,C) = (A \cdot \overline{C} + A) \cdot (A \cdot \overline{C} + \overline{B}) \cdot (A \cdot \overline{C} + \overline{C})$$
 Distributiva (suma respecto a producto)

$$F(A,B,C) = (A+A)\cdot (A+\overline{C})\cdot (A+\overline{B})\cdot (\overline{B}+\overline{C})\cdot (A+\overline{C})\cdot (\overline{C}+\overline{C})$$
 Distributiva (suma respecto a producto)

$$F(A,B,C) = A \cdot (A + \overline{C}) \cdot (A + \overline{B}) \cdot (\overline{B} + \overline{C}) \cdot (A + \overline{C}) \cdot \overline{C}$$
 Idempotencia

Formato Algebraico (3)

Por ejemplo: dada la función $F(A,B,C)=(\overline{A}+C)\cdot \overline{A\cdot B+C}$ obtenga, algebraicamente, el formato $\prod \Sigma$

$$F(A,B,C) = A \cdot (A + \overline{C}) \cdot (A + \overline{B}) \cdot (\overline{B} + \overline{C}) \cdot (A + \overline{C}) \cdot \overline{C}$$
 Idempotencia Pseudocanónica

$$F(A,B,C) = (A+0+0) \cdot (A+0+\overline{C}) \cdot (A+\overline{B}+0) \cdot (0+\overline{B}+\overline{C}) \cdot (A+0+\overline{C}) \cdot (0+0+\overline{C}) \quad \text{Tautolog\'a}$$

$$F(A,B,C) = (A + B \cdot \overline{B} + C \cdot \overline{C}) \cdot (A + B \cdot \overline{B} + \overline{C}) \cdot (A + \overline{B} + C \cdot \overline{C}) \cdot (A \cdot \overline{A} + \overline{B} + \overline{C}) \cdot (A + B \cdot \overline{B} + \overline{C}) \cdot (A \cdot \overline{A} + B \cdot \overline{B} + \overline{C})$$
Complemento

$$F(A,B,C) = (A + \overline{B} + \overline{C}) \cdot (A + \overline{B} + C) \cdot (A + B + \overline{C}) \cdot (A + B + C) \cdot (A + \overline{B} + \overline{C}) \cdot (A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (A + \overline{C})$$

$$F(A,B,C) = (A + \overline{B} + \overline{C}) \cdot (A + \overline{B} + C) \cdot (A + B + \overline{C}) \cdot (A + B + C) \cdot (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \qquad \text{Idempotencia}$$

Formato Algebraico (4)

- Por Tabla de Verdad
 - Los términos canónicos se obtienen a partir de la TV, asociando las salidas en estado 1 con el formato ∑∏ y las salidas 0 con el formato ∏∑.
 - Por ejemplo: dada la función $F(A,B,C)=(\overline{A}+C)\cdot \overline{A\cdot \overline{B}+C}$ obtenga, por TV, el formato $\Sigma \Pi$

Α	В	С	F	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	0	

1: Variable Directa – 0: Variable Negada

$$F(A, B, C) = A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C}$$

Formato Algebraico (5)

- Por Tabla de Verdad
 - Por ejemplo: dada la función $F(A,B,C)=(\overline{A}+C)\cdot \overline{A\cdot \overline{B}+C}$ obtenga, por TV, el formato $\prod \Sigma$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0,
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

0: Variable Directa – 1: Variable Negada

$$F(A, B, C) = (A + B + C) \cdot (A + B + \overline{C}) \cdot (A + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (A + \overline{B} + \overline{C})$$

Formato Numérico (1)

- Por Método Algebraico
 - Consiste en aplicar convenientemente las leyes del álgebra binaria para obtener el formato canónico algebraico deseado. Y luego, transformar cada término a su equivalente decimal.
 - Por ejemplo: dada la función $F(A, B, C) = (\overline{A} + C) \cdot \overline{A \cdot \overline{B} + C}$ obtenga, algebraicamente, el formato numérico $\Sigma \prod$

$$F(A,B,C) = A \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C}$$

Negado: 0
Directo: 1

1 1 0

1 0 0

 $\sum_{3}(4,6)$

Formato Numérico (2)

- Por Método Algebraico
 - Por ejemplo: dada la función $F(A,B,C) = (\overline{A} + C) \cdot \overline{A \cdot \overline{B} + C}$ obtenga, algebraicamente, el formato numérico ∏∑

$$F(A,B,C) = (A + \overline{B} + \overline{C}) \cdot (A + \overline{B} + C) \cdot (A + B + \overline{C}) \cdot (A + B + C) \cdot (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C})$$

Negado: 0 **Directo: 1**

100111101110000010

$$\prod_{3}(0,2,4,5,6,7)$$

Formato Numérico (3)

- Por Tabla de Verdad
 - Los términos canónicos se obtienen a partir de la TV, asociando las salidas en estado 1 con el formato ∑∏ y las salidas 0 con el formato ∏∑.
 - Por ejemplo: dada la función $F(A,B,C)=(\overline{A}+C)\cdot \overline{A\cdot \overline{B}+C}$ obtenga, por TV, el formato $\Sigma \Pi$

	ΣΠ	A	В	С	F
	0	0	0	0	0
	1	0	0	1	0
	2	0	1	0	0
	3	0	1	1	0
1	4	1	0	0	1
	5	1	0	1	0
1	6	1	1	0	1
	7	1	1	1	0

Formato Algebraico (5)

- Por Tabla de Verdad
 - Por ejemplo: dada la función $F(A,B,C)=(\overline{A}+C)\cdot\overline{A\cdot\overline{B}+\overline{C}}$ obtenga, por TV, el formato $\prod \Sigma$

ΠΣ	Α	В	С	F
7	0	0	0	0
6	0	0	1	0
5	0	1	0	0
4	0	1	1	_ 0 _ /
3	1	_ 0	0	1
2	1	0	1	0
1	1	1	0	1
0	1	1	1	0

$$\prod_{3}(0,2,4,5,6,7)$$

Conversión de Numéricas

- Es posible pasar de un formato numérico a otro aplicando el siguiente proceso:
 - Deben identificarse los términos faltantes (argumentos) en la función canónica numérica.
 - Se resta a 2ⁿ-1 el valor de cada término faltante, siendo n la cantidad de variables de la función.
 - Los valores obtenidos constituyen los argumentos de la otra forma canónica numérica.

$$\prod_{3}(0,2,4,5,6,7) \longrightarrow \sum_{3}(4,6)$$

$$\sum_{3} (4,6) \qquad \qquad \prod_{3} (0,2,4,5,6,7)$$

Faltantes: 1, 3

 $2^3-1=7 \rightarrow 7-1,3$

Términos: 6, 4

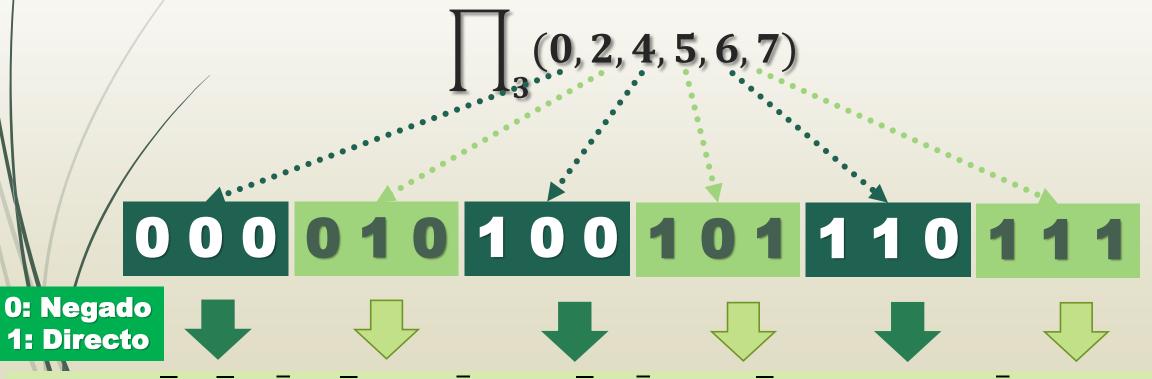
Faltantes: 0, 1, 2, 3, 5, 7

 $2^{3}-1=7 \rightarrow 7 - 0, 1, 2, 3, 5, 7$

Términos: 7, 6, 5, 4, 2, 0

De Numéricas a Algebraicas

Por ejemplo: dada la siguiente función canónica numérica ∏∑ obtenga la función canónica algebraica correspondiente.



 $F(A,B,C) = (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (A + \overline{B} + C) \cdot (A + B + \overline{C}) \cdot (A + B + C)$