Trabajo Práctico Nº 10: Derivada de funciones exponenciales. Derivadas de orden superior. Derivada del logaritmo y de las trigonométricas inversas. Derivación implícita. Derivada de ecuaciones paramétricas.

El "elcétera" es el descanso de los sabios y la excusa de los ignorantes.

1) Cuestionario

- a) ¿Qué entiende por derivadas sucesivas? ¿Cómo hace para calcular una derivada enésima?
- b) ¿En qué consiste el método para derivar una función implícita?
- c) ¿En qué consiste el método de derivación logarítmica?
- d) ¿En qué tipo de funciones es *necesario* aplicar el método de derivación logarítmica? ¿cuándo es *conveniente* aplicar el método de derivación logarítmica? ¿En qué otros casos se puede aplicar el método de derivación logarítmica?

2) Ejercicios Resueltos

1.- Dada la función f /
$$f(x) = \frac{1}{1 - 2x}$$
, calcular $f^{(n)}(x)$ y $f^{(20)}(x)$

Solución

0

La notación $f^{(n)}(x) = \frac{d^n y}{dx^n}$ significa derivada enésima. Para calcularla debemos hallar las primeras derivadas,

tantas como sean necesarias, hasta que nos demos cuenta el modelo que sigue, y así enunciar la fórmula que tendrá la derivada enésima

$$y = (1-2x)^{-1}$$

$$y' = (-1). (1-2x)^{-2} (-2) = 1.2. (1-2x)^{-2}$$

$$y'' = 1.2. (-2). (1-2x)^{-3} (-2) = 2^2.1.2. (1-2x)^{-3}$$

$$y''' = 2^2 1.2. (-3). (1-2x)^{-4} (-2) = 2^3.1.2.3. (1-2x)^{-4}$$

$$y^{iv} = 2^3.1.2.3. (-4). (1-2x)^{-5} (-2) = 2^4.1.2.3.4. (1-2x)^{-5}$$

$$y^{v} = 2^4.1.2.3.4. (-5). (1-2x)^{-6} (-2) = 2^5.1.2.3.4.5. (1-2x)^{-6}$$

Podemos ver la forma que van tomando las derivadas sucesivas, y teniendo en cuenta que:

1.
$$2.3.4.5 = 5!$$
 y en general 1. $2.3.4.5.6...n = n!$, se tendrá

$$f^{(n)}(x) = \frac{d^n y}{dx^n} = 2^n \cdot n! (1-2x)^{-(n+1)}$$
 que es la fórmula para la derivada enésima

Para el cálculo de f $^{(20)}$ (x) simplemente reemplazamos en la fórmula encontrada n por 20 f $^{(20)}$ (x) = 2 20 . 20! (1-2x) $^{-21}$

2.- Calcular y' mediante derivación implícita, siendo sen $(x + y) = y^2 \cos x$

Solución

Si queremos encontrar y' debemos considerar primero que

$$\frac{dy}{dx} = (y)' = y'$$
 y que $\frac{dx}{dx} = (x)' = 1$

Luego derivamos ambos miembros de la ecuación respecto a x (aplicando las reglas de derivación vistas hasta ahora, es decir regla de la suma, regla del producto, regla de la cadena, etc.) y a continuación resolvemos la ecuación resultante para y', es decir

$$(\text{sen} (x + y))' = (y^2 \cos x)'(1) \Rightarrow$$

$$\cos (x + y) (x + y)' = 2 y y' \cos x + y^2 (-\sin x) \Rightarrow$$

$$\cos (x + y) (1 + y') = 2 y y' \cos x + y^2 (-\sin x) \Rightarrow$$

$$\cos (x + y) + y' \cdot \cos (x + y) = 2 y y' \cos x + y^2 (-\sin x)$$

Note que en el primer miembro de (1) aplicamos la regla de la cadena dos veces y en el segundo miembro, la regla de la cadena (recordar que y es función de x) y del producto

Agrupamos los términos que contienen y':

$$y^2 \operatorname{sen} x + \cos (x + y) = 2 y \cos x y' - \cos (x + y) y'$$

Luego despejamos y': y' = $\frac{y^2 \operatorname{sen} x + \cos(x + y)}{2 y \cos x - \cos(x + y)}$

3.- Aplicar derivación logarítmica para encontrar y', siendo:

a)
$$y = \frac{x^{3/4}\sqrt{x^2 + 1}}{(3x + 2)^5}$$
 b) $y = x^{\sqrt{x}}$

Solución

El método de derivación logarítmica consiste en aplicar logaritmo natural miembro a miembro, derivar en forma implícita y luego despejar y'.

Se debe tener en cuenta que los logaritmos tienen propiedades – solamente – si se aplican a productos, cocientes, potencias o raíces; como sigue:

$$\ln\left(MN\right) = \ln M + \ln N \qquad //\ln\left(\frac{M}{N}\right) = \ln M - \ln N \qquad /\ln\left(M^n\right) = n\ln M \qquad //\ln\left(\sqrt[n]{M}\right) = \frac{\ln M}{n}$$

Al derivar con respecto a x: $\ln y = \ln F$ aparece en el primer miembro $\frac{1}{y}y' = (\ln F)'$, entonces el despeje de la

derivada que se busca se obtiene pasando la fórmula de la función (y) al segundo miembro multiplicando.

En cuanto a las derivadas, se debe recordar algunas reglas:

- i) Base constante y exponente variable función exponencial $\rightarrow \left(a^{f(x)}\right) = a^{f(x)} \ln a.f'(x)$
- ii) Base variable y exponente constante función potencial $\rightarrow ((f(x))^n) = n(f(x))^{n-1} f'(x)$
- iii) Base y exponente constantes función constante \rightarrow $\left(a^{n}\right) = 0$
- iv) Base y exponente variables $\rightarrow \left(f(x)^{g(x)}\right)$ Se deriva aplicando derivación logarítmica.

a)
$$y = \frac{x^{3/4}\sqrt{x^2 + 1}}{(3x + 2)^5} \Rightarrow \ln y = \ln \left(\frac{x^{3/4}\sqrt{x^2 + 1}}{(3x + 2)^5}\right) \Rightarrow \ln y = \frac{3}{4}\ln x + \frac{1}{2}\ln(x^2 + 1) - 5\ln(3x + 2)$$

Al derivar implícitamente con respecto a x, resulta

$$\frac{1}{y}y' = \frac{3}{4} \cdot \frac{1}{x} + \frac{1}{2} \cdot \frac{2x}{x^2 + 1} - 5 \cdot \frac{3}{3x + 2}$$

Despejando y', se tiene

$$y' = y \left(\frac{3}{4x} + \frac{x}{x^2 + 1} - \frac{15}{3x + 2} \right)$$

Reemplazando y por
$$\frac{x^{3/4}\sqrt{x^2+1}}{\left(3x+2\right)^5}$$
 queda: $y' = \frac{x^{3/4}\sqrt{x^2+1}}{\left(3x+2\right)^5}\left(\frac{3}{4x} + \frac{x}{x^2+1} - \frac{15}{3x+2}\right)$

b) Procediendo como en el caso recién visto se tiene

$$y = x^{\sqrt{x}} \Rightarrow \ln y = \ln (x^{\sqrt{x}}) \Rightarrow \ln y = \sqrt{x} \ln x \Rightarrow \frac{1}{y} y' = \frac{1}{2\sqrt{x}} \cdot \ln x + \sqrt{x} \cdot \frac{1}{x}$$

Note que en el segundo miembro se aplica derivada de un producto

Despejando y', se tiene y' = y
$$\left(\frac{\ln x}{2\sqrt{x}} + \frac{1}{\sqrt{x}}\right)$$
 Reemplazando y: y' = $x^{\sqrt{x}} \left(\frac{\ln x}{2\sqrt{x}} + \frac{1}{\sqrt{x}}\right)$

3) Ejercicios para resolver en clases

1.- Calcula la derivada de las funciones dadas por las fórmulas:

a)
$$y = 7^{\sqrt{x}}$$

b)
$$g(x) = 4x \cdot 9^{-x^2}$$

b)
$$g(x) = 4x \cdot 9^{-x^2}$$
 c) $f(x) = 7^{(6x^2 \cdot \cos x)}$

- 2.- a) Sea la curva dada por $f(x) = 4x + e^{x-9}$, encuentra las ecuaciones de las rectas tangente y normal a la curva en el punto de abscisa x = 9.
- b) Halla la ecuación de la recta tangente y normal a la curva, dada por $y = \sqrt[3]{x+6}$, en el punto donde y = 0.

- 3.- Calcula las derivadas que se indican para cada una de las funciones dadas por su fórmula:
 - a) f', f'' y f''' siendo $f(x) = 6x^2 x^9 + \frac{1}{x^3}$
 - **b)** $f^{(n)}(x)$ **y** $f^{(10)}(x)$ **si** $f(x) = e^{5x}$
 - **c)** $f^{(n)}(x)$, $f^{(15)}(x)$ **v** $f^{(20)}(x)$ **si** $f(x) = \operatorname{sen} x$
- 4.- Utiliza la regla de la derivada de función inversa y obtiene y' si:
 - a) y = arc tg x
- **b)** $y = arc \cos x$ **c)** $y = arc \sec (x)$
- 5.- Si g es la función inversa de f tal que $f(x) = 2 + \sqrt{x}$, encuentra g'(4) sin determinar g.
- 6.- Supone que f es derivable en **R** y que α es un número real, $F(x) = f(x^{\alpha})$ y $G(x) = [f(x)]^{\alpha}$. Encuentra una expresión para F'(x) y para G'(x).
- 7.-Para cada una de las siguientes funciones definidas por su fórmula, halla la derivada

a)
$$f(x) = (x+4)^9 \cdot sen(3+7x-x^9) - arc sen(x+8)$$

- **b)** $gx) = \ln(\sin 8x)$ **c)** $h(x) = \cos^7(\ln 3x)$ **d)** $i(x) = \ln(x^7 + \sqrt{8 + x^6})$

- **e)** $j(x) = x^6 \cdot \ln 9x$ **f)** $k(x) = 7^x \cdot \log(8x)$ **g)** $l(x) = 7^{\ln 7x} + \frac{e^3}{\log(9x)}$

- **h)** $m(x) = \ln(\ln 7x)$ **i)** $n(x) = (\log_5 5x)^5$ **j)** $p(x) = \log_9 \sqrt{x} + e^{7 \cdot \cos x}$
- 8.- Escribe la expresión de cada función y = f(x) empleando las propiedades de la función logaritmo, de modo que la función se defina como el logaritmo de una única expresión, y luego calcula la derivada:
 - a) $y = \frac{1}{3} \ln(x+2) + \frac{1}{3} \ln x$
- **b)** $y = \log_5 x \log_5(x+7) \log_5(x-7)$
- 9.- Dada $y = \frac{\sqrt{x}}{(x+9) \cdot \sqrt[3]{7x+8}}$, obtiene $\frac{dy}{dx}$. Para ello, aplica el logaritmo a la expresión dada ($\ln y$) y luego deriva.

10.- Obtiene la razón de cambio de $y = \ln \sqrt[5]{x}$ en x = 32.

11.- Calcula $\frac{dy}{dt}$, $\frac{dx}{dt}$ y $\frac{dy}{dx}$ en cada uno de los siguientes casos:

a)
$$\begin{cases} x = t^3 + 1 \\ y = t^5 - 4 \end{cases}$$

b)
$$\begin{cases} x = e^t \\ y = e^{-6t} \end{cases}$$
 c) $\begin{cases} x = 7 + 3t \\ y = e^{4t} \end{cases}$

a)
$$\begin{cases} x = t^3 + 1 \\ y = t^5 - 4 \end{cases}$$
 b) $\begin{cases} x = e^t \\ y = e^{-6t} \end{cases}$ c) $\begin{cases} x = 7 + 3t^4 \\ y = e^{4t} \end{cases}$ d) $\begin{cases} x = (a-1).\cos t \\ y = a.\sin t \end{cases}$ siendo $a = cte$.

12.- a) Encuentra el o los puntos donde la recta tangente a la curva de ecuaciones paramétricas:

$$\begin{cases} x = 6t - 3 \\ y = e^{t-1} + 2 \end{cases}$$

sea paralela a la recta de ecuación: 6y - x - 12 = 0

b) Encuentra el o los puntos donde la recta tangente a la curva de ecuaciones paramétricas:

$$\begin{cases} x = 4t + 8 \\ y = t + e^t \end{cases}$$

sea paralela a la recta de ecuación $y - \frac{1}{4}x = 5$.

13.- Halla la derivada de:

a)
$$y = arc \sec(5x - 1)^2$$
 b) $y = \sqrt[5]{arc \sec x^8}$ **c)** $y = x^{1/5}$. $arc \cot x^4$

b)
$$y = \sqrt[5]{arc \operatorname{sen} x^8}$$

c)
$$y = x^{1/5}$$
. $arc \cot x^4$

4) Ejercicios adicionales

1.- Hallar la derivada solicitada

a)
$$f''(x)$$
 y $f^{(5)}(x)$ si $f(x) = \sin 2x - x^9$

b)
$$f^{(3)}$$
 y $f^{(n)}$ si $f(x) = \ln(1+x)$

2.- La derivada: dy/dx de: sen(x+y) + cos(y) = y es:.....

<u>La derivada de</u>: $f(x) = e^{x}$

Si se quiere determinar la derivada de $f(x) = e^x$ resulta el siguiente límite

$$\lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^x}{\Delta x} = \lim_{\Delta x \to 0} \frac{e^x (e^{\Delta x} - 1)}{\Delta x} = e^x \lim_{\Delta x \to 0} \frac{(e^{\Delta x} - 1)}{\Delta x} = e^x \cdot 1 = e^x$$

El $\lim_{\Delta x \to 0} \frac{(e^{\Delta x} - 1)}{\Delta x} = 1$ según surge de la Tabla D1 de valores Δx próximos a cero para

$$f(\Delta x) = \frac{\left(e^{\Delta x} - 1\right)}{\Delta x}$$

La derivada de la exponencial la misma función : $f(x) = f'(x) = e^x$

$$\Delta x \rightarrow 0^-$$

Δχ	-0,5	-0,1	-0,01	-0,001	-0,0001	-0,00001
$f(\Delta x) = \frac{(e^{\Delta x} - 1)}{\Delta x}$	0,786938	0,951625	0,995016	0,999500	0,999950	0,999999

$$\Delta x \rightarrow 0^+$$

Δx	0,5	0,1	0,01	0,001	0,0001	0,00001
$f(\Delta x) = \frac{(e^{\Delta x} - 1)}{\Delta x}$	1,297442	1,051709	1,005016	1,000500	1,000050	1,000000

Tablas TD1 : Valores próximos a cero por izquierda y por derecha para $f(\Delta x) = \frac{(e^{\Delta x}-1)}{\Delta x}$