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Preface to the Second Edition

On the occasion of this new edition, the text was enlarged by several new
sections. Two sections on B-splines and their computation were added to the
chapter on spline functions: Due to their special properties, their flexibility,
and the availability of well-tested programs for their computation, B-splines
play an important role in many applications.

Also, the authors followed suggestions by many readers to supplement
the chapter on elimination methods with a section dealing with the solution
of large sparse systems of linear equations. Even though such systems are
usually solved by iterative methods, the realm of elimination methods has
been widely extended due to powerful techniques for handling sparse matrices.
We will explain some of these techniques in connection with the Cholesky
algorithm for solving positive definite linear systems.

The chapter on eigenvalue problems was enlarged by a section on the
Lanczos algorithm; the sections on the LR and QR algorithm were rewritten
and now contain a description of implicit shift techniques.

In order to some extent take into account the progress in the area of
ordinary differential equations, a new section on implicit differential equa-
tions and differential-algebraic systems was added, and the section on stiff
differential equations was updated by describing further methods to solve
such equations.

The last chapter on the iterative solution of linear equations was also
improved. The modern view of the conjugate gradient algorithm as an itera-
tive method was stressed by adding an analysis of its convergence rate and a
description of some preconditioning techniques. Finally, a new section on
multigrid methods was incorporated: It contains a description of their basic
ideas in the context of a simple boundary value problem for ordinary differen-
tial equations.



vi Preface to the Second Edition

Many of the changes were suggested by several colleagues and readers. In
particular, we would like to thank R. Seydel, P. Rentrop, and A. Neumaier
for detailed proposals and our translators R. Bartels, W. Gautschi, and
C. Witzgall for their valuable work and critical commentaries. The original
German version was handled by F. Jarre, and 1. Brugger was responsible for
the expert typing of the many versions of the manuscript.

Finally we thank Springer-Verlag for the encouragement, patience, and
close cooperation leading to this new edition.

Wiirzburg, Miinchen J. Stoer
May 1991 R. Bulirsch



Preface to the First Edition

This book is based on a one-year introductory course on numerical analysis
given by the authors at several universities in Germany and the United States.
The authors concentrate on methods which can be worked out on a digital
computer. For important topics, algorithmic descriptions (given more or less
formally in ALGOL 60), as well as thorough but concise treatments of their
theoretical foundations, are provided. Where several methods for solving a
problem are presented, comparisons of their applicability and limitations are
offered. Each comparison is based on operation counts, theoretical properties
such as convergence rates, and, more importantly, the intrinsic numerical
properties that account for the reliability or unreliability of an algorithm.
Within this context, the introductory chapter on error analysis plays a special
role because it precisely describes basic concepts, such as the numerical
stability of algorithms, that are indispensable in the thorough treatment of
numerical questions.

The remaining seven chapters are devoted to describing numerical meth-
ods in various contexts. In addition to covering standard topics, these chap-
ters encompass some special subjects not usually found in introductions to
numerical analysis. Chapter 2, which discusses interpolation, gives an ac-
count of modern fast Fourier transform methods. In Chapter 3, extrapolation
techniques for speeding up the convergence of discretization methods in
connection with Romberg integration are explained at length.

The following chapter on solving linear equations contains a description
of a numerically stable realization of the simplex method for solving linear
programming problems. Further minimization algorithms for solving uncon-
strained minimization problems are treated in Chapter 5, which is devoted to
solving nonlinear equations.

After a long chapter on eigenvalue problems for matrices, Chapter 7 is

vii



viii Preface to the First Edition

devoted to methods for solving ordinary differential equations. This chapter
contains a broad discussion of modern multiple shooting techniques for
solving two-point boundary-value problems. In contrast, methods for partial
differential equations are not treated systematically. The aim is only to point
out analogies to certain methods for solving ordinary differential equations,
e.g., difference methods and variational techniques. The final chapter is de-
voted to discussing special methods for solving large sparse systems of linear
equations resulting primarily from the application of difference or finite ele-
ment techniques to partial differential equations. In addition to iteration
methods, the conjugate gradient algorithm of Hestenes and Stiefel and the
Buneman algorithm (which provides an example of a modern direct method
for solving the discretized Poisson problem) are described.

Within each chapter numerous examples and exercises illustrate the
numerical and theoretical properties of the various methods. Each chapter
concludes with an extensive list of references.

The authors are indebted to many who have contributed to this introduc-
tion into numerical analysis. Above all, we gratefully acknowledge the deep
influence of the early lectures of F.L. Bauer on our presentation. Many
colleagues have helped us with their careful reading of manuscripts and many
useful suggestions. Among others we would like to thank are C. Reinsch,
M.B. Spijker, and, in particular, our indefatigable team of translators,
R. Bartels, W. Gautschi, and C. Witzgall. Our co-workers K. Butendeich,
G. Schuller, J. Zowe, and I. Brugger helped us to prepare the original German
edition. Last but not least we express our sincerest thanks to Springer-Verlag
for their good cooperation during the past years.

Wiirzburg, Miinchen J. Stoer
August 1979 R. Bulirsch
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Error Analysis

Assessing the accuracy of the results of calculations is a paramount goal in
numerical analysis. One distinguishes several kinds of errors which may
limit this accuracy:

(1) errors in the input data,
(2) roundoff errors,
(3) approximation errors.

Input or data errors are beyond the control of the calculation. They may be
due, for instance, to the inherent imperfections of physical measurements.
Roundoff errors arise if one calculates with numbers whose representation is
restricted to a finite number of digits, as is usually the case.

As for the third kind of error, many methods will not yield the exact
solution of the given problem P, even if the calculations are carried out
without rounding, but rather the solution of another simpler problem P
which approximates P. For instance, the problem P of summing an infinite
series, €.g.,

may be replaced by the simpler problem P of summing only up to a finite
number of terms of the series. The resulting approximation error is
commonly called a truncation error (however, this term is also used for the
roundoff related error committed by deleting any last digit of a number
representation). Many approximating problems P are obtained by
“discretizing” the original problem P: definite integrals are approximated
by finite sums, differential quotients by a difference quotients, etc. In such
cases, the approximation error is often referred to as discretization error.

1



1 Error Analysis

Some authors extend the term *truncation error” to cover discretization
errors.

In this chapter, we will examine the general effect of input and roundoff
errors on the result of a calculation. Approximation errors will be discussed
in later chapters as we deal with individual methods. For a comprehensive

treatment of roundoff errors in floating-point computation see Sterbenz
(1974).

1.1 Representation of Numbers

Based on their fundamentally different ways of representing numbers, two
categories of computing machinery can be distinguished:

(1) analog computers,
(2) digital computers.

Examples of analog computers are slide rules and mechanical integrators as
well as electronic analog computers. When using these devices one replaces
numbers by physical quantities, e.g., the length of a bar or the intensity of a
voltage, and simulates the mathematical problem by a physical one, which is
solved through measurement, yielding a solution for the original mathemati-
cal problem as well. The scales of a slide rule, for instance, represent num-
bers x by ‘line segments of length k In x. Multiplication is simulated by
positioning line segments contiguously and measuring the combined length
for the result.

It is clear that the accuracy of analog devices is directly limited by the
physical measurements they employ.

Digital computers express the digits of a number representation by a
sequence of discrete physical quantities. Typical instances are desk calcula-
tors and electronic digital computers.

EXAMPLE

123101*——»1{ T 1

Each digit is represented by a specific physical quantity. Since only a
small finite number of different digits have to be encoded—in the decimal
number system, for instance, there are only 10 digits—the representation of
digits in digital computers need not be quite as precise as the representation
of numbers in analog computers. Thus one might tolerate voltages between,
say, 7.8 and 8.2 when aiming at a representation of the digit 8 by 8 volts.
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Consequently, the accuracy of digital computers is not directly limited by
the precision of physical measurements.

For technical reasons, most modern electronic digital computers repre-
sent numbers internally in binary rather than decimal form. Here the
coefficients or bits a; of a decomposition by powers of 2 play the role of digits
in the representation of a number x:

x=4(2"+ 0, 2" T+ g2 o 27 b 277400,
;=0 or 1

In order not to confuse decimal and binary representations of numbers, we
denote the bits of a binary number representation by O and L, respectively.

ExaMPLE. The number x = 18.5 admits the decomposition
185=1x2*4+0x22+0x22+1x2"+0x2°+1x2"!
and has therefore the binary representation »

LOOLO.L.

We will use mainly the decimal system, pointing out differences between
the two systems whenever it is pertinent to the examination at hand.

As the example 3.999...= 4 shows, the decimal representation of a
number may not be unique. The same holds for binary representations. To
exclude such ambiguities, we will always refer to the finite representation
unless otherwise stated.

In general, digital computers must make do with a fixed finite number of
places, the word length, when internally representing a number. This number
n is determined by the make of the machine, although some machines have
built-in extensions to integer multiples 2n, 3n, ... (double word length, triple
word length, ...) of n to offer greater precision if needed. A word length of n
places can be used in several different fashions to represent a number.

Fixed-point representation specifies a fixed number n, of places before and
a fixed number n, after the decimal (binary) point, so that n=n, + n,
(usually n, =0 or ny, = n).

ExXAMPLE. Forn=10,n; =4,n, =6

30.421 — | 0030 | 421000

0.0437 — | 0000 | 043700

e e

n n;

In this representation, the position of the decimal (binary) point is fixed.
A few simple digital devices, mainly for accounting purposes, are still re-



4 1 Error Analysis

stricted to fixed-point representation. Much more important, in particular for
scientific calculations, are digital computers featuring floating-point rep-
resentation of numbers. Here the decimal (binary) point is not fixed at the
outset; rather its position with respect to the first digit is indicated for each
number separately. This is done by specifying a so-called exponent. In other
words, each real number can be represented in the form

(1.1.1) x=ax 10°x=a x 2*) with |a| <1, b integer

(say, 30.421 by 0.30421 x 10?), where the exponent b indicates the position
of the decimal point with respect to the mantissa a. Rutishauser proposed the
following “semilogarithmic” notation, which displays the basis of the
number system at the subscript level and moves the exponent down to
the level of the mantissa:

0.30421,,2
Analogously,
O.LOOLOL,LOL

denotes the number 18.5 in the binary system. On any digital computer there
are, of course, only fixed finite numbers t and e, n = t + e, of places available
for the representation of mantissa and exponent, respectively.

ExAMPLE. For t = 4, ¢ = 2 one would have the floating-point representation

0 | 5420 04 | or more concisely | 5420 | 04
10 .

for the number 5420 in the decimal system.

The floating-point representation of a number need not be unique. Since
5420 = 0.542,,4 = 0.0542,,5, one could also have the floating-point

representation
0 | 0542 05| or | 0542 |05
10

instead of the one given in the above example.

A floating-point representation is normalized if the first digit (bit) of the
mantissa is different from 0 (O). Then |a| > 107! (]a| >27") holds in
(1.1.1). The significant digits (bits) of a number are the digits of the mantissa
not counting leading zeros.

In what follows, we will only consider normalized floating-point rep-
resentations and the corresponding floating-point arithmetic. The numbers
t and e determine—together with the basis B = 10 or B = 2 of the number
representation—the set A S R of real numbers which can be represented
exactly within a given machine. The elements of A are called the machine
numbers.
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While normalized floating-point arithmetic is prevalent on current elec-
tronic digital computers, unnormalized arithmetic has been proposed to
ensure that only truly significant digits are carried [Ashenhurst and
Metropolis, (1959)].

1.2 Roundoff Errors and Floating-Point Arithmetic

The set A of numbers which are representable in a given machine is only
finite. The question therefore arises of how to approximate a number x ¢ 4
which is not a machine number by a number g € A which is. This problem is
encountered not only when reading data into a computer, but also when
representing intermediate results within the computer during the course of a
calculation. Indeed, straightforward examples show that the results of
elementary arithmetic operations x + y, x x y, x/y need not belong to A,
even if both operands x, y € A4 are machine numbers.

It is natural to postulate that the approximation of any number x ¢ A4 by
a machine number rd(x) € A should satisfy

(1.2.1) |x —rd(x)| < |x—g| forallge A
Such a machine-number approximation rd(x) can be obtained in most cases
by rounding.
EXAMPLE 1 (t = 4)
rd(0.14285,,0) = 0.1429,,0,
rd(3.14159,,0) = 0.3142,,1,
rd(0.142842,42) = 0.1428,,2.
In. general, one can proceed as follows in order to find rd(x) for a t-digit

computer: x ¢ A is first represented in normalized form x = a x 10°, so that
|a| = 107 . Suppose the decimal representation of |a| is given by

|a|=0.ala2...a,-a,~+l..., OSaiSQ, al#o.
Then one forms
R (X 27 PO 2 if0<a,, <4,
a = .
|0tgoy ..o+ 107" ifo,,, =5,

that is, one increases a, by 1 if the (¢ + 1)st digit «,,, > 5, and deletes all
digits after the tth one. Finally one puts

rd(x):=sign(x) - @’ x 10%.
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Since |a| > 107!, the “relative error ” of rd(x) admits the following bound
(Scarborough, 1950):

rd(x) — x

X

—(@t+1)
T s k10
|a]
With the abbreviation eps :=5 x 107, this can be written as
(12.2) rd(x) = x(1 + ), where |&| < eps.

The quantity eps = 5 x 107 is called the machine precision. In the binary
system, rd(x) is defined analogously: Starting with a decomposition
x = a x 2" satisfying 27! < |a| <1 and the binary representation of |a|,

- 0, =0o0rL, a,=L,

lal =0y ... o0,y ..
one forms

Vo [0.y... o ifa,,; =0,

00y o 427 i, =L,
rd(x) :=sign(x) - @’ x 2"

Again (1.2.2) holds, provided one defines the machine precision by
eps:=2""
Whenever td(x) € A is a machine number, then d has the property (1.2.1)
of a correct rounding process, and we may define
rd(x):=rd(x) for all x with Td(x)e A.

Because only a finite number e of places are available to express the expon-
ent in a floating-point representation, there are unfortunately always num-
bers x ¢ A with rd(x) ¢ A.
EXAMPLE 2 (t =4, e = 2).

(a) d(0.31794,,110) =0.3179,,110 ¢ A.

(b) 1d(0.99997,099) = 0.1000,,100 ¢ A.

(c) Td(0.012345,,—99) = 0.1235,,— 100 ¢ A.

(d) rd(0.54321,5— 110) = 0.5432,,— 110 ¢ A.
In cases (a) and (b) the exponent is too greatly positive to fit the allotted
space: These are instances of exponent overflow. Case (b) is particularly
pathological: exponent overflow happens only after rounding. Cases (c) and
(d) are instances of exponent underflow, ie., the exponent of the number

represented is too greatly negative. In cases (c) and (d) exponent underflow
may be prevented by defining

1d(0.012345,,—99) = 0.0123,,— 99 € 4,

(12.3)
rd(0.54321,0—110) = O € A.



1.2 Roundoff Errors and Floating-Point Arithmetic 7

But then rd does not satisfy (1.2.2), that is, the relative error of rd(x) may
exceed eps. Digital computers treat occurrences of exponent overflow and
underflow as irregularities of the calculation. In the case of exponent
underflow, rd(x) may be formed as indicated in (1.2.3). Exponent overflow
may cause a halt in calculations. In the remaining regular cases (but not for
all makes of computers), rounding is defined by

rd(x) = rd(x).

Exponent overflow and underflow can be avoided to some extent by
suitable scaling of the input data and by incorporating special checks and
rescalings during computations. Since each different numerical method will
require its own special protection techniques, and since overflow and
underflow do not happen very frequently, we will make the idealized
assumption that e = oo in our subsequent discussions, so that rd = rd does
indeed provide a rule for rounding which ensures

rd:R— 4,
(1.2.4) -

rd(x)= x(1 + &) with |¢] <eps forallxe R.

In further examples we will, correspondingly, give the length ¢ of the man-
tissa only. The reader must bear in mind, however, that subsequent state-
ments regarding roundoff errors may be invalid if overflows or underflows
are allowed to happen.

We have seen that the results of arithmetic operations x + y, x x y, x/y
need not be machine numbers, even if the operands x and y are. Thus one
cannot expect to reproduce the arithmetic operations exactly on a digital
computer. One will have to be content with substitute operations +*, —*,
x *, [*, so-called floating-point operations, which approximate the arithmetic
operations as well as possible [v.Neumann and Goldstein (1947)]. Such
operations may be defined, for instance, with the help of the rounding map
rd as follows

x +*y=rd(x + y),
—* yi=rd(x —
(1.2.5) x =t y=rdx—y) for x, y € A,
x x*y:=rd(x x y),
x [*y=rd(x/y),

so that (1.2.4) implies

X+*y=(x+yl+e)
x=*y=(x—y)l +¢;)
(1.2.6) Xt y= (e x )14 53) |&;| < eps.

x[*y=0x/yl +z)
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On many modern computer installations, the floating-point operations
+*, ... are not defined by (1.2.5), but instead in such a way that (1.2.6) holds
with only a somewhat weaker bound, say, |¢;| <k - eps, k > 1 being a small
integer. Since these small deviations from (1.2.6) are not significant for our
examinations, we will assume for simplicity that the fioating-point opera-
tions are in fact defined by (1.2.5) and hence satisfy (1.2.6).

It should be pointed out that the floating-point operations do not satisfy
the well-known laws for arithmetic aperations. For instance,

X+*y=x if|y|<9?|x|, X, yE A,

where B is the basis of the number system. The machine precision eps could
indeed be defined as the smallest positive machine number g for which
1+*g>1:

eps =min{g € A|1 +* g > 1 and g > 0}.
Furthermore, floating-point operations need not be associative or

distributive.

EXAMPLE 3 (t = 8). With

8
It

0.23371258,0—4,
0.33678429, 2,
= —0.33677811,02,

S
II

o
I

one has
a+*(b+*c)=023371258,,—4 + *0.61800000,,— 3

=0.64137126,5—3,
(@ +* b) +* ¢ = 0.33678452,,2 —* 0.33677811,,2
= 0.64100000, , — 3.

The exact result is

a+ b+ c=00641371258,,-3.

When subtracting two numbers x, y € 4 of the same sign, one has to
watch out for cancellation. This occurs if x and y agree in one or more
leading digits with respect to the same exponent, e.g.,

X = 0.315876101,
y = 0.314289101.

The subtraction causes the common leading digits to disappear. The exact
result x — y is consequently a machine number, so that no new roundoff
error x — * y = x — y arises. In this sense, subtraction in the case of cancella-
tion is a quite harmless operation. We will see in the next section, however,
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that cancellation is extremely dangerous concerning the propagation of old
errors, which stem from the calculations of x and y prior to carrying out the
subtraction x — y.

For expressing the result of floating-point calculations, a convenient but
slightly imprecise notation has been widely accepted, and we will use it
frequently ourselves: If it is clear from the context how to evaluate an
arithmetic expression E (if need be this can be specified by inserting suitable
parentheses), then fl(E) denotes the value of the expression as obtained by
floating-point arithmetic.

ExaMPLE 4
fi{x x y)==x x*y,
fla+ (b+c))=a+*({b+*c)
flifa+b)+c)=(@+*b)+*c

We will also use the notation fI(\/x), fl(zos(x)), etc., whenever the digital
computer approximates functions \/— , €Os, etc., by substitutes f * cos*,
etc. Thus fI(,/x)=./x*, and so on.

The arithmetic operations +, —, X, /, together with those basic functions
like \/_ , cos, for which floating-point substitutes \/_ * cos*, etc., have been
specified, will be called elementary operations.

1.3 Error Propagation

We have seen in the previous section (Example 3) that two different but
mathematically equivalent methods (a + b) + ¢, a + (b + ¢) for evaluating
the same expression a + b + ¢ may lead to different results if floating-point
arithmetic is used. For numerical purposes it is therefore important to dis-
tinguish between different evaluation schemes even if they are mathemat-
ically equivalent. Thus we call a finite sequence of elementary operations (as
given for instance by consecutive computer instructions) which prescribes
how to calculate the solution of a problem from given input data, an
algorithm.

We will formalize the notion of an algorithm somewhat. Suppose a prob-
lem consists of calculating desired result numbers y,, ..., y, from input
numbers x,, ..., X,. If we introduce the vectors

Xy Y1
X = ) y= s
I Ym

then solving the above problem means determining the value y = ¢(x) of a
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certain multivariate vector function ¢: D » R™ D < R", where ¢ is given by
m real functions ¢;,

Vi = @i(xq, ..., X,), i=1,....,m

At each stage of a calculation there is an operand set of numbers, which
either are original input numbers x; or have resulted from previous opera-
tions. A single operation calculates a new number from one or more ele-
ments of the operand set. The new number is either an intermediate or a final
result. In any case, it is adjoined to the operand set, which then is purged of
all entries that will not be needed as operands during the remainder of the
calculation. The final operand set will consist of the desired results
Yio oo Vm-

Therefore, an operation corresponds to a transformation of the operand
set. Writing consecutive operand sets as vectors,

xP
x = e R
xy
we can associate with an elementary operation an elementary map
(P(i): Di — R+, Di c R"i’
so that
PO(x @) = XU+ D),

where x“* 1 is a vector representation of the transformed operand set. The
elementary map ¢ is uniquely defined except for inconsequential permuta-
tions of x'” and x®* ) which stem from the arbitrariness involved in arrang-
ing the corresponding operand sets in the form of vectors.
Given an algorithm, then its sequence of elementary operations gives rise
to a decomposition of ¢ into a sequence of elementary maps
" D;>D;yy, i=0,1,...,7, D;SRY,
31
(1 3 ) Q= (p(') ° (p(r—l) 0-"-0 (P(O)’ D, =D, Dr+1 < R = R™

which characterize the algorithm.

ExaMpPLE 1. For ¢(a, b,c)=a+ b + ¢, consider the two algorithms n:=a + b,
y:=c+nand n:=b + ¢, y:=a + n. The decompositions (1.3.1) are

b
0 %a, b, )= a z_ ] e R?, oPu, v)=u+veR
and
0 %a, b, ¢)= b i J e R? o Mu,v)=u+veR
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ExaMPLE 2. Since a® — b%*= (a + b)(a — b), one has for the calculation of
o(a, b)=a® — b? the two algorithms

Algorithm 1: n,=a x a, Algorithm 2: ny=a+b,
n2=b x b, n==a-—b,
Yy =m —n2, Yy =m Xnz.

Corresponding decompositions (1.3.1) are

Algorithm 1:  ¢(a, b) =

a® u
| O V(u, v) = s @D (u, V) =u — v,

a
Algorithm 2:  ¢'°(a, b) == b |, ¢Va b,u)= [
a+b

u

@ =y
a—b]’ o P(u, v)=u- .

Note that the decomposition of ¢(a, b) :=a® — b? corresponding to Algorithm 1
above can be telescoped into a simpler decomposition:

aZ

Strictly speaking, however, map $® is not elementary. Moreover the decomposition
does not determine the algorithm uniquely, since there is still a choice, however
numerically insignificant, of what to compute first, a® or b2.

Hoping to find criteria for judging the quality of algorithms, we will now
examine the reasons why different algorithms for solving the same problem
generally yield different results. Error propagation, for one, plays a decisive
role, as the example of the sum y=a + b + ¢ shows (see Example 3 in
Section 12). Here floating-point arithmetic yields an approximation
y = fl{{a + b) + ¢) to y which, according to (1.2.6), satisfies

n=fl(a + b) = (a + b)(1 + ¢,),
y=1illn+c)=(n+c)l + ;)
=[(@a+b)(1 +¢)+c)J1+e)

a+b

=(a+b+c) 1+a+m

el + &)+

For the relative error ¢, :=(y — y)/y of y,

a+b

8y=m81(1 + 82)+82

or disregarding terms of order higher than 1 in &’s such as ¢,¢,,

a+b
gy = ——e& +1¢g,.
a+b+c
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The amplification factors (a + b)/(a + b + ¢) and 1, respectively, measure
the effect of the roundoff errors ¢, &, on the error ¢, of the result. The factor
(a + b)/(a + b + c) is critical: depending on whether |a + b| or |b + c| is
the smaller of the two, it is better to proceed via (a + b) + ¢ rather than
a+ (b + c) for computing a + b + c.

In Example 3 of the previous section,
a+b  033..,02
a+b+c 064..,0-3
b+c 0618...,0—3

— = -~ 0.97,
a+b+c 064...,,-3

~ 4 x 105,

which explains the higher accuracy of fl{a + (b + c)).

The above method of examining the propagation of particular errors
while disregarding higher-order terms can be extended systematically to
provide a differential error analysis of an algorithm for computing ¢(x) if this
function is given by a decomposition (1.3.1):

0 =00l D pO

To this end we must investigate how the input errors Ax of x as well as the
roundoff errors accumulated during the course of the algorithm affect the
final result y = ¢(x). We start this investigation by considering the input
errors Ax alone, and we will apply any insights we gain to the analysis of
the propagation of roundoff errors. We suppose that the function

(pl(xl’ T X,,)
¢: D> R™, o(x) = : ,
(Pm(xla R Xn)
is defined on an open subset D of R", and that its component functions ¢;,

i=1, ..., n have continuous first derivatives on D. Let X be an approximate
value for x. Then we denote by

Ax;=Xx; — x;, Ax=Xx—x

the absolute error of x; and x, respectively. The relative error of x; is defined
as the quantity

=X e 40,

X;

Replacing the input data x by x leads to the result y:= ¢(x) instead of
y = ¢(x). Expanding in a Taylor series and disregarding higher-order terms
gives

Ay =3 = yi= ¢i(X) — @ilx) = i (x; — xj)éig')fx)

j=1
dp;(x) .
1 afoxj, i=1,...,m,

J

(132)

M=

1]

i
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or in matrix notation,

00, 09,
Ay 0x, 0x, 1
(133) Ay= =] : : = Do(x) - Ax
0P 0Py
AYm 0x, ox, Ax,

with the Jacobian matrix Dg(x).

The notation * = ” instead of “ = ", which has been used occasionally
before, is meant to indicate that the corresponding equations are only a first
order approximation, i.e., they do not take quantities of higher order (in &’s
or A’s) into account.

The quantity de,(x)/0x; in (1.3.3) represents the sensitivity with which y;
reacts to absolute perturbations Ax; of x;. If y; # 0fori=1,..., m and
x; # 0 for j=1, ..., n, then a similar error propagation formula holds for
relative errors:

. Z xj ?(P,»(X)
S eulx) Ox;
Again the quantity (x;/¢;) 0¢; /0x; indicates how strongly a relative error in
x; affects the relative error in y;. The amplification factors (x;/¢;) ¢, /0x;
for the relative error have the advantage of not depending on the scales of y,
and x;. The amplification factors for relative errors are generally called
condition numbers. If any condition numbers are present which have large
absolute values, then one speaks of an ill-conditioned problem; otherwise, of
a well-conditioned problem. For ill-conditioned problems, small relative
errors in the input data x can cause large relative errors in the results
y = o(x).

The above concept of condition number suffers from the fact that it is
meaningful only for nonzero y;, x;. Moreover, it is impractical for many
purposes, since the condition of ¢ is described by mn numbers. For these
reasons, the conditions of special classes of problems are frequently defined
in a more convenient fashion. In linear algebra, for example, it is customary
to call numbers ¢ condition numbers if, in conjunction with a suitable norm

-1,

(1.3.4) € y

Ex,-

o) = o _ 1% — x|
o] I

(see Section 4.4).

ExXaMPLE 3. For y = ¢(a, b, ¢)'==a + b + ¢, (1.3.4) gives

a b c

&, = &, € €,
Eavb+c  arbrc® T atbte

c .

The problem is well conditioned if every summand a, b, ¢ is small compared to
a+b+ec
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ExaMpLE 4. Let y = ¢(p, )= —p + /p* + q. Then

PR R N U S,
op Vi +aq pt+q’ dqg  2/p*+gq

so that

gy = P e+ I S i P2+g£
- _ . _ N »
RN R TN VL R N L

‘VJ %gl p+/p t+a
Jrr+al T 2+

¢ is well conditioned if ¢ > 0, and badly conditioned if ¢ = —pZ.

Since

<1 for ¢ > 0,

For the arithmetic operations (1.3.4) specializes to (x # 0, y # 0)
(1.3.5a) @(x,y)=x-y: &,=¢t+¢
(1.3.5b) @(x, y)==x/y: &yy=&c—¢&

(1.3.5¢) @(x, y)=x%y: &eu,= e

x+y T T x+y?

(135d) o(x)=y/x1 ez =1t

It follows that the multiplication, division, and square root are not dan-
gerous: The relative errors of the operands don’t propagate strongly into the
result. This is also the case for the addition, provided the operands x and y
have the same sign. Indeed, the condition numbers x/(x + y), y/(x + y) then
lie between 0 and 1, and they add up to 1, whence

> L]}

If one operand is small compared to the other, but carries a large relative
error, the result x + y will still have a small relative error so long as the other
operand has only a small relative error: error damping results. If, however,
two operands of different sign are to be added, then at least one of the factors

if x+y#0.

|exs,| < max{|e,

y
xX+y

X
x+y!

is bigger than 1, and at least one of the relative errors ¢, , &, will be amplified.
This amplification is drastic if x * —y holds and therefore cancellation
occurs.

We will now employ the formula (1.3.3) to describe the propagation of
roundoff errors for a given algorithm. An algorithm for computing the func-
tion ¢: D —» R™, D = R", for a given x = (x4, ..., x,)" € D corresponds to a
decomposition of the map ¢ into elementary maps ¢ [see (1.3.1)], and leads
from x® = x via a chain of intermediate results

(136) x=x© 5 pOx@)=xD 55 -+ 5 pO(x) = xt+ D=y
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to the result y. Again we assume that every ¢'” is continuously differentiable
on D;.
Now let us denote by /' the “ remainder map”
YO =" o g Do o o DS R™ i=0,1,2,...,1

Then Y@ = ¢. Dp and Dy/¥ are the Jacobian matrices of the maps ¢ and
Y@, Since Jacobian matrices are multiplicative with respect to function
composition,

D(f - g)(x) = Df (g(x)) - Dg(x),

we note for further reference that

(1.3_7a) D(p(x) = D(p(r)(x(r)) . D(p(r-l)(x(r-l)) e D(p(o)(x),
(1.3.7b) D\//‘i)(xm) = D(p(r)(x(r)) . D(p('— 1)(x(r— 1)) N D(p(i)(x(i)),
i=0,1,...,r

With floating-point arithmetic, input and roundoff errors will perturb the
intermediate (exact) results x® so that approximate values X with
XD = fl(p(x")) will be obtained instead. For the absolute errors
AxD = 39 — x),

(138)  AXED = [[l{p(E9)) — pOE9)] + [pO?) — gO(x)]
By (1.3.3) (disregarding higher-order error terms),
(1.39) PV(ED) — O(xD) = PP (xD) AxD.

If ! is an elementary map, or if it involves only independent elementary
operations, the floating-point evaluation of ¢ will yield the rounding of the
exact value:

(13.10) f1(p®(u)) = rd(p(u)).

Note, in this context, that the map ¢”: D; > D;,; < R"%*! is actually a
vector of component functions ¢{’: D, > R,

_ @ (u)
eOu) =1 : :
@4 1 (1)

Thus (1.3.10) must be interpreted componentwise:
fl(@ () = rd(e()) = (1 + ;)0 (),

(1.3.11) Isjl < eps, j=12,..., ..

Here ¢; is the new relative roundoff error generated during the calculation of
the jth component of ¢ in floating-point arithmetic. Plainly, (1.3.10) can
also be written in the form

fl(?(u)) = (I + Eiv1) - ¢(u)
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with the identity matrix I and the diagonal error matrix

& 0

0 . & <eps.
Eni+1
This yields the following expression for the first bracket in (1.3.8):
f1 ((p(i’(i“’)) — (p(i)(;((i)) =E .- (p(i)(}(i))'
Furthermore E,,, - ¢(X") = E;, , - ¢(x'”), since the error terms by

which ¢(x®) and ¢”(x?”) differ are multiplied by the error terms on the
diagonal of E,, ,, giving rise to higher-order error terms. Therefore

(1.3.12) “((p(i)(i(i)))l_ PIEOY 2 E,, - oO(x0) = E;py - x0T D =g,

The quantity «;,, can be interpreted as the absolute roundoff error newly
created when ¢ is evaluated in floating-point arithmetic, and the diagonal
elements of E;,, can be similarly interpreted as the corresponding relative
roundoff errors. Thus by (1.3.8), (1.3.9) and (1.3.12), Ax“* ! can be expressed
in first-order approximation as follows

AXE*D 2+ DOP(x®) - Ax® = E;, - XD 4 DpO(x) - Ax®,
i>0, Ax'? = Ax.
Consequently
Ax? = De'(x) Ax + a,,
Ax? = DeW(xM)[De®(x) - Ax + o] + 3,

Ay = Ax""D = Dp" ... De'? - Ax + Do ... DoV - oy + - + 0, 4.

In view of (1.3.7), we finally arrive at the following formulas which describe
the effect of the input errors Ax and the roundoff errors o; on the result
y=x"*1 = o)

Ay = Do(x) - Ax + DYP(xP) - oy + -+ + DYO(xD) - o, + o4 4
(1.3.13) = Do(x) - Ax + DYyV(xV) - E;x + -+ + DYO(x) - E, - x©
+ Er+1 Y.

It is therefore the size of the Jacobian matrix Dy of the remainder map "
which is critical for the effect of the intermediate roundoff errors «; or E; on
the final result.

ExaMpPLE 5. For the two algorithms for computing y = ¢(a, b) = a*> — b? given in
Example 2 we have for Algorithm 1:
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x = x© = [Z], X = ‘22], X = [‘;z], X = y=a? b2
Y B(u, 0) = u — v, Y u, v)=u — v,
Do(x) = (2a, —2b),
DYDY = (1, —2b),  DYPEP) = (1, —1)

2 * 2
o = [sl: ’, E, = [f)l g], since f1(®(x'?)) — @ O(x'?) = [a xb a] — [Z ]

0 00
S N R

a3 = e3(a® — b?), |&| <eps fori=1,2,3.
From (1.1.13) with Ax = ig],
(1.3.14) Ay =2a Aa — 2b Ab + a%; — b%e; + (a* — b¥)es.

Analogously for Algorithm 2:

x = x0 = [Z]’ xu)= [a+b]’ x(2)=y=az —-bz,

a—b
Yu, v)=u - v,
Do(x) = (2a, —2b), DYV(xV)= (a — b, a + b),
o, z;zz _+_ z; , ay=¢3(@a®—b?), E,= [f)l SJ, |&i| <eps,
and therefore (1.1.13) again yields
(1.3.15) Ay =2a Aa — 2b Ab + (a® — b?)(es +e+ &3).

If one selects a different algorithm for calculating the same result ¢(x) (in
other words, a different decomposition of ¢ into elementary maps), then Do
remains unchanged; the Jacobian matrices Dy, which measure the propa-
gation of roundof, will be different, however, and so will be the total effect of
rounding,

(13.16) DY PVu, + - + DYOu, + 0, ;.

An algorithm is called numerically more trustworthy than another algor-
ithm for calculating ¢(x) if, for a given set of data x, the total effect of
rounding, (1.3.16), is less for the first algorithm than for the second one.

ExaMpLE 6. The total effect of rounding using Algorithm 1 in Example 2 is, by
(1.3.14),

(1.3.17) |a’e, — b%e; + (a® — b?)es | < (a® + b® + |a® — b?|)eps,
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and that of Algorithm 2, by (1.3.15),
(1.3.18) | (@ — b?)(ey + &2 + £3)] < 3|a® — b?|eps.

Algorithm 2 is numerically more trustworthy than algorithm 1 whenever
4 < |a/b |* < 3; otherwise algorithm 1 is more trustworthy. This follows from the
equivalence of the two relations 4 < |a/b|* <3 and 3|a® — b?| <a® +b* +
|a* — b?|.
For a:=0.3237, b:=0.3134, using four places (¢t = 4), we obtain the following
results.
Algorithm 1: a x* a=0.1048, b x* b= 0.9822,,— 1,
(@ x*a)—* (b x*b)=0.6580,0 — 2.
Algorithm 2: a +* b = 0.6371, a—*b=0.1030,,—1,
(@+*b) x* (a—*b)=0.6562,—2.
Exact result: a* — b* = 0.656213,,—2.

In the error propagation formula (1.3.13), the last term admits the follow-
ing bound:!

|Er+1y| < |y|ep5,

no matter what algorithm had been used for computing y = ¢(x). Hence an
error Ay of magnitude |y|eps has to be expected for any algorithm. Note,
moreover, when using mantissas of ¢t places, that the rounding of the input
data x = (x,, ..., x,)" will cause an input error A”x with

|A9x| <|x|eps,

unless the input data are already machine numbers and therefore represent-
able exactly. Since the latter cannot be counted on, any algorithm for com-
puting y = ¢(x) will have to be assumed to incur the error De(x) - Ax, so
that altogether for every such algorithm an error of magnitude

(1.3.19) Ay =[|Do(x)|" |x| + |y|Jeps

must be expected. We call A’y the inherent error of y. Since this error will
have to be reckoned with in any case, it would be unreasonable to ask that
the influence of intermediate roundoff errors on the final result be con-
siderably smaller than A®y. We therefore call roundoff errors «; or E;
harmless if their contribution in (1.3.13) towards the total error Ay is of at
most the same order of magnitude as the inherent error A®y from (1.3.19):

|Dt//‘i)(x(i)) . 0‘;" — |D\p(i)(x(i)) . Eix(l')l ~ A(O)y-

If all roundoff errors of an algorithm are harmless, then the algorithm is said
to be well behaved or numerically stable. This particular notion of numerical
stability has been promoted by Bauer et al. (1965); Bauer also uses the term

! The absolute values of vectors and matrices are to be understood componentwise, e.g.,
[yl =(ysls s lym])"
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benign (1974). Finding numerically stable algorithms is a primary task of
numerical analysis.

ExAMPLE 7. Both algorithms of Example 2 are numerically stable. Indeed, the inher-
ent error Ay is as follows:

wy = (@2lal. 21001 | |2

Comparing this with (1.3.17) and (1.3.18) even shows that the total roundoff error of
each of the two algorithms cannot exceed A®y.

+ |a? — b2|)eps = (2(a® + b*) + |a® — b?|)eps.

Let us pause to review our usage of terms. Numerical trustworthiness,
which we will use as a comparative term, relates to the roundoff errors
associated with two or more algorithms for the same problem. Numerical
stability, which we will use as an absolute term, relates to the inherent error
and the corresponding harmlessness of the roundoff errors associated with a
single algorithm. Thus one algorithm may be numerically more trustworthy
than another, yet neither may be numerically stable. If both are numerically
stable, the numerically more trustworthy algorithm is to be preferred. We
attach the qualifier “ numerically ” because of the widespread use of the term
“stable ” without that qualifier in other contexts such as the terminology of
differential equations, economic models, and linear multistep iterations,
where it has different meanings. Further illustrations of the concepts which
we have introduced above will be found in the next section.

A general technique for establishing the numerical stability of an algor-
ithm, the so-called backward analysis, has been introduced by Wilkinson
(1960) for the purpose of examining algorithms in linear algebra. He tries to
show that the floating-point result y = y + Ay of an algorithm for comput-
ing y = @(x) may be written in the form § = ¢(x + Ax), that is, as the result
of an exact calculation based on perturbed input data x + Ax. If Ax turns
out to have the same order of magnitude as |A©x| < |x|eps, then the
algorithm is indeed numerically stable.

Bauer (1974) associates graphs with algorithms in order to illuminate
their error patterns. For instance, Algorithms 1 and 2 of example 2 give rise
to the graphs in Figure 1. The nodes of these graphs correspond to the
intermediate results. Node i is linked to node j by a directed arc if the inter-
mediate result corresponding to node i is an operand of the elementary
operation which produces the result corresponding to node j. At each node
there arises a new relative roundoff error, which is written next to its node.
Amplification factors for the relative errors are similarly associated with,
and written next to, the arcs of the graph. Tracing through the graph of
Algorithm 1, for instance, one obtains the following error relations:

e =16+1 ¢e+e¢, e, =1 &+ 1 &+¢,

My n2
t € * &y, + &3.
'11_'12 N T n2 3

& =
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Figure 1 Graphs Representing Algorithms and Their Error Propagation.

To find the factor by which to multiply the roundoff error at node i in order
to get its contribution to the error at node j, one multiplies all arc factors for
each directed path from i to j and adds these products. The graph of Algor-
ithm 2 thus indicates that the input error ¢, contributes

a a
(a+b 1+a—b 1) e

to the error ¢,.

1.4 Examples

ExaMPLE 1. This example follows up Example 4 of the previous section: given p > 0,
q > 0, p > q, determine the root

y=-p+/p+4q
with smallest absolute value of the quadratic equation
y +2py—q=0.

Input data: p, g. Result: y = ¢(p, g) = —p + /p* + q.
The problem was seen to be well conditioned for p > 0, g > 0. It was also shown

that the relative input errors ¢,, ¢, make the following contribution to the relative

error of the result y = ¢(p, q):
-p P+ /P +q,

-p q 3
\/?+qs”+2y\/p7+q£"_\/p2+qe'+ INEY




1.4 Examples 21

Since
‘ p \<1 {P+\/I7+¢1‘<l
~x 1, ‘ﬁs‘ = 4
NEET 2/p* +q
the inherent error Ay satisfies
©)
eps < &0 ==—Ay—y < 3 eps.

We will now consider two algorithms for computing y = ¢(p, q).

Algorithm 1: s+=p?,

t:=s+gq,
w=/,
y=-p+u
Obviously, p > q causes cancellation when y:= —p + u is evaluated, and it must

therefore be expected that the roundoff error

Au ==e\/f = a\/;2 +4q,
generated during the floating-point calculation of the square root
/)=t +¢),  |¢| <eps,

will be greatly amplified. Indeed, the above error contributes the following term to

the error of y:
L NI

- €
y —p+r +q
1
=a(p,/p1+q+p2+q)e=k-a.

Since p, ¢ > 0, the amplification factor k admits the following lower bound:

2
k>2L >0,

which is large, since p > g by hypothesis. Therefore, the proposed algorithm is not
numerically stable, because the influence of rounding ./ p* + q alone exceeds that of
the inherent error £ by an order of magnitude.

Algorithm 2:  s+=p?,

t=s+gq,
=1,
v==p+u,

y=qfv.
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This algorithm does not cause cancellation when calculating v *=p + u. The roundoff

error Au = ¢./p? + g, which stems from rounding ./p? + g, will be amplified accord-
ing to the remainder map ¥ (u):

u—q)+u—>p—%=t]1(u).

Thus it contributes the following term to the relative error of y:

1oy . -q
yau T3 ap A
_ -q/P* +4 e
(=p+/P+ )+ /P +4q)
2
VP +a
-~ % _-eg=ke
p+yp+4

The amplification factor k remains small; indeed, |k| < 1, and Algorithm 2 is there-
fore numerically stable.

The following numerical results illustrate the difference between Algorithms 1 and
2. They were obtained using floating-point arithmetic of 40 binary mantissa places—
about 13 decimal places—as will be the case in subsequent numerical examples.

p = 1000, g = 0.018 000 000 081.

Result y according to Algorithm 1: 0.900 030 136 108,,—5,
Result y according to Algorithm 2: 0.899 999 999 999,,— 5,
Exact value of y: 0.900 000 000 000,,—5.

ExaMpLE 2. For given fixed x and integer k, the value of cos kx may be computed
recursively using for m= 1,2, ..., k — 1 the formula

cos(m + 1)x = 2 cos x cos mx — cos{m — 1)x.

In this case, a trigonometric-function evaluation has to be carried out only once, to
find ¢ = cos x. Now let |x| # 0 be a small number. The calculation of ¢ causes a
small roundoff error:

¢=(1+¢)cosx, |e] < eps.

How does this roundoff error affect the calculation of cos kx?
cos kx can be expressed in terms of ¢: cos kx = cos(k arccos ¢) =:f(c).
Since
df _ksin kx
dc sinx

3

the error ¢ cos x of ¢ causes, to first approximation, an absolute error

(14.1) A cos kx = ¢ Xk sin kx = ¢ - k cot x sin kx
sin x

in cos kx.
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On the other hand, the inherent error A©¢, (1.3.19) of the result ¢, *=cos kx is
A©¢, = [k|x sin kx| + |cos kx|]eps.
Comparing this with (1.4.1) shows that A cos kx may be considerably larger than
A®c¢, for small |x|; hence the algorithm is not numerically stable.
ExaMpLE 3. For given x and a “large” positive integer k, the numbers cos kx and

sin kx are to be computed recursively using

cos mx :=cos x cos(m — 1)x — sin x sin(m — 1)x,

sin mx *=sin x cos(m — 1)x + cos x sin(m — 1)x, m=12,..,k

How do small errors ¢, cos x, & sin x in the calculation of cos x, sin x affect the final
results cos kx, sin kx? Abbreviating c,, = COs mx, Sy *=Ssin mx, ¢ :=cos x, s *=sin x,
and putting

we have

c"'“’, m=1,....k

Sm-1

Sm
Here U is a unitary matrix, which corresponds to a rotation by the angle x. Repeated
application of the formula above gives

o o )

ou_f1 o] au_fo -1)_
éc |0 1 s |1 0 ’

Now

and therefore

bij
— Uk = kU*?
Jc ’

%U"= AU + UAU*"2 4+ + UK 14

= kAU,

because A commutes with U. Since U describes a rotation in R? by the angle x,

0 o, |eostk — 1)x  —sin(k — 1)x
dc " lsin(k —1)x  cos(k — I)x|
d Uk = —sin(k — 1)x —cos(k — 1)x

s cos(k — 1)x —sin(k — 1)x|’
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The relative errors ¢, ¢ of ¢ = cos x, s = sin x effect the following absolute errors of
cos kx, sin kx:

AT IETHUE NI
As,‘l = [EcU Hol g, COS X + aSU o eesinx
(142) .
—ekcosx [0k TN s —sin(k — 1)x
=g sin(k — 1)x ek sin x cos(k — 1|

The inherent errors A®¢, and A%, of ¢, = cos kx and s, = sin kx, respectively, are
given by
A%%¢, = [k|x sin kx| + |cos kx|]eps,
(1.4.3
) A%, = [k]x cos kx| + |sin kx|]eps.

Comparison of (1.4.2) and (1.4.3) reveals that for big k and |kx| = 1 the influence of
the roundoff error ¢, is considerably bigger than the inherent errors, while the round-
off error ¢, is harmless. The algorithm is not numerically stable, albeit numerically
more trustworthy than the algorithm of Example 2 as far as the computation of ¢,
alone is concerned.

ExaMPLE 4. For small | x|, the recursive calculation of

Cp = COS MX, S, = Sin mx, m=1,2 ...,
based on

cos(m + 1)x = cos x cos mx — sin x sin mx,

sin{m + 1)x = sin x cos mx + cos x sin mx,

as in Example 3, may be further improved numerically. To this end, we express the
differences ds,, ., and dc,,,, of subsequent sine and cosine values as follows:

dcp sy *=cos(m + 1)x — cos mx

= 2(cos x — 1) cos mx — sin x sin mx — COs X COS MXx + COs mMx
., X
= —4|sin 5] cos mx + [cos mx — cos(m — 1)x]

dSp+y =sin(m + 1)x — sin mx

= 2(cos x — 1) sin mx + sin x cos mx — cos x sin mx + sin mx
., XY . .
= —4{sin 5] sinmx + [sin mx — sin(m — 1)x].

This leads to a more elaborate recursive algorithm for computing cy, s, in the case
x>0

de, = -2 sinz’z-‘, t:=2 de,,

dsl =V —dcl(2 + dCl),

So = 0, co=1,
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and form:==1,2, ... k:
Cm = Cp—y1 + dCp,, dCpiy =t Cp +dcp,
Sm = Sm—1 + dSp, dSp 1=t " S, +ds,,.
For the error analysis, note that c, and s, are functions of s = sin(x/2):

¢ = cos(2k arcsin s) = @, (s),

s, = sin(2k arcsin s) =: @, (s).

An error As = ¢, sin(x/2) in the calculation of s therefore causes—to a first-order
approximation—the following errors in ¢:

?ﬂe sin X=—¢ - =2k sin kx sin >
s 7 2" cos(x/2) 2
= —2k tan %sin kx - &,
and in s;:
‘7_‘1’18 sin = = 2k tan % cos kx -
s ° 2 2% a

Comparison with the inherent errors (1.4.3) shows these errors to be harmless for
small | x|. The algorithm is then numerically stable, at least as far as the influence of
the roundoff error ¢, is concerned.

Again we illustrate our analytical considerations with some numerical results. Let
x = 0.001, k = 1000.

Algorithm Result for cos kx Relative error
Example 2 0.540 302 121 124 —-0.34,,-6
Example 3 0.540 302 305 776 —0.17,0—-9
Example 4 0.540 302 305 865 —0.58,,—11

Exact value 0.540 302 305 868 140...

ExXAMPLE 5. We will derive some results which will be useful for the analysis of
algorithms for solving linear equations in Section 4.5. Given the quantities c, a,, ...,
G,, by, ..., by With a, # 0, we want to find the solution B, of the linear equation

(1.4.4) c—ayby——ay_yb,y —a,p,=0.
Floating-point arithmetic yields the approximate solution

(1.4.5) b =ﬂ(c_‘11b1 —"'—a,,_,b,,_l)

Gn
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as follows:
S0=¢;
(1.4.6) forj=12,....,n—1,
si=fls;—1 — a;bj) = (s;-1 — a;b(1 + p(1 + a;);
by = l(sn— 1 /a) = (1 + 6)s0- 1 /an,

with |u,| |@;|, |8]| <eps. If a, = 1, as is frequently the case in applications, then
é =0, since b, :==s,_;.
We will now describe two useful estimates for the residual

r=c—ayb; — - — ayb,.
From (1.4.6) follow the equations

SQ—C=O,
(si i —ab)=s — | b
sj— (sj-1—ajbj)=s; 1+a_+al iHj
j

o; .
=sil—+’T‘j—ajbjpj, j=1L2...,n—1,

Anbp — Sp-1 =0 Sp—1.

Summing these equations yields

n n—-1
r=c— Yab=Y (—s, % +a,b,p,) O Sp-y
i=1 j=1 1+a
and thereby the first one of the promised estimates:
ens , n—1
(1.4.7) 7| < ’p [6 [$0-1] + _Zl(|5j| + |a;b;|)}
=
0 ifa,=1,

|1 otherwise.

The second estimate is cruder than (1.4.7). (1.4.6) gives

(1.48) b, = ﬂ (1 + o) — 2 a;bi(1 + ;) ﬂ (1+ ak)
which can be solved for c:
-1 n-1
(149) c= Z ajbi(1 + ;) n (14 a)™ " +aby(1+8)7" T (1 +a)™ "
k=1

A simple induction argument over m shows that
(1+o)y=[] (1 +a)*", |ox] <eps, m-eps<l
k=1

implies

m - eps
1—m-eps’

lo| <
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In view of (1.4.9) this ensures the existence of quantities ¢; with

n—1
(1.4.10) c= Y abj(l +j &)+ ab,(1 +(n—1+8)s),
ji=1
eps 0 ifa,=1,
lejl <= =
1—n-eps " |1 otherwise.
Forr=c—a;b; —a, b, —--- — a,b, we have consequently
(1411) | |\’-—n-e—pg Z}Ia,b|+(n—1+6)|ab|

In particular, (1.4.8) reveals the numerical stability of our algorithm for comput-
ing B,. The roundoff error a,, contributes the amount

c—albl ‘—azbz—"'—ambma
a, "

to the absolute error in f,. This, however, is at most equal to

C-& — alblsal - = ambmsa.
a,
e+ oo
el

which represents no more than the influence of the input errors ¢, and ¢, of ¢ and g;,
i=1,..., m, respectively, provided |z, |&,| < eps. The remaining roundoff errors
i and § are similarly shown to be harmless.

The numerical stability of the above algorithm is often shown by interpreting
(1.4.10) in the sense of backward analysis: The computed approximate solution b, is
the exact solution of the equation

c—ayby —--—a,b,=0,
whose coefficients
a;=aj(l + jg;), I<j<sn-1,
a,=ay(1 + (n— 1+ 8))

have been changed only slightly from their original values a;. This kind of analysis,
however, involves the difficulty of having to define how large n can be so that errors
of the form ne, |&| < eps can still be considered as being of the same order of
magnitude as the machine precision eps.

1.5 Interval Arithmetic; Statistical Roundoff
Estimation

The effect of a few roundoff errors can be quite readily estimated, to a
first-order approximation, by the methods of Section 1.3. For a typical
numerical method, however, the number of arithmetic operations, and con-
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sequently the number of individual roundoff errors, is very large, and the
corresponding algorithm is too complicated to permit the estimation of the
total effect of all roundoff errors in this fashion.

A technique known as interval arithmetic offers an approach to determin-
ing exact upper bounds for the absolute error of an algorithm, taking into
account all roundoff and data errors. Interval arithmetic is based on the
realization that the exact values for all real numbers a € R which either enter
an algorithm or are computed as intermediate or final results are usually not
known. At best one knows small intervals wich contain a. For this reason,
the interval-arithmetic approach is to calculate systematically in terms of
such intervals

a=la,a",
bounded by machine numbers a', a” € A, rather than in terms of single real
numbers a. Each unknown number a is represented by an interval
a=[a’, a"] with a € a. The arithmetic operations @ € {®, ©, ®, O} be-
tween intervals are defined so as to be compatible with the above interpreta-
tion. That is, é=a © b is defined as an interval (as small as possible)
satisfying

¢of{athb|lacaand be b}

and having machine number endpoints.
In the case of addition, for instance, this holds if @ is defined as follows:

[cl, C”] — [ar’ al/] @ [b,, bli],
where
c=max{y € A|y <a + b},
¢"=min{y" € A|y" > a" + b"},
with A denoting again the set of machine numbers. In the case of multiplica-
tion ®, assuming, say, a’ > 0, b’ > 0,
[C’, c//] — [al, au] ® [b’, bu]
can be defined by letting
al X b/}’
a// x b"}.
Replacing, in these and similar fashions, every quantity by an interval and
every arithmetic operation by its corresponding interval operation—this is
readily implemented on computers—we obtain interval algorithms which
produce intervals guaranteed to contain the desired exact solutions. The

data for these interval algorithms will be again intervals, chosen to allow for
data errors.

It has been found, however, that an uncritical utilization of interval arith-
metic techniques leads to error bounds which, while certainly reliable, are in

’

¢ ==max{y € 4|y <
=

¢’ =min{y” € A|y’
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most cases much too pessimistic. It is not enough to simply substitute inter-
val operations for arithmetic operations without taking into account how the
particular roundoff or data errors enter into the respective results. For
example, it happens quite frequently that a certain roundoff error ¢ impairs
some intermediate results u,, ..., u, of an algorithm considerably,

% >1 fori=1,...,n,
O
while the final result y = f(u,, ..., u,) is not strongly affected,
oy
Zig,
O

even though it is calculated from the highly inaccurate intermediate values
uy, ..., u,: the algorithm shows error damping.

ExaMpLE 1. Evaluate y = ¢(x)=x>—3x? +3x = ((x — 3) x x + 3) x x using
Horner’s scheme:

u=x-—73,
vi=u X X,
wi=v+ 3,
y=w XX

The value x is known to lie in the interval
x € X =[09, 1.1].

Starting with this interval and using straight interval arithmetic, we find

i=%0[3 3 =[-21, —19],
b=ua®%=[—231, —1.71],
w=0O[3, 3] =[069, 1.29],

y=w® Xx=[0.621, 1.419).
The interval y is much too large compared to the interval

{o(x)|x € X} = [0.999, 1.001],
which describes the actual effect of an error in x on ¢(x).

ExampLE 2. Using just ordinary 2-digit arithmetic gives considerably more accurate
results than the interval arithmetic suggests:

x=10.9 x=11

u | —-21 -19
v | -19 -21
w 11 09
y 099 0.99
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For the successful application of interval arithmetic, therefore, it is not
sufficient merely to replace the arithmetic operations of commonly used
algorithms by interval operations: It is necessary to develop new algorithms
producing the same final results but having an improved error-dependence
pattern for the intermediate results.

ExAMPLE 3. In Example 1 a simple transformation of ¢(x) suffices:
y=o0(x)=1+ (x— 1)

When applied to the corresponding evaluation algorithm and the same starting
interval X = [0.9, 1.1}, interval arithmetic now produces the optimal result:

u, =xO[1,1]=[-0.1,01],

iy =ity ® ity = [—0.01, 0.01],

iy = i1, ® iy, = [—0.001, 0.001],
y=i; ®1, 1] = [0.999, 1.001].

As far as ordinary arithmetic is concerned, there is not much difference between the
two evaluation algorithms of Example 1 and Example 3. Using two digits again, the
results are practically identical to those in Exampie 2:

x=09 x=1.1

uy =01 0.1
U 0.01 0.01
us  —0001 0001
y 1.0 1.0

For an in-depth treatment of interval arithmetic the reader should
consult, for instance, Moore (1966) or Kulisch (1969).

In order to obtain statistical roundoff estimates [Rademacher (1948)], we
assume that the relative roundoff error [see (1.2.6)] which is caused by an
elementary operation is a random variable with values in the interval [ - eps,
eps]. Furthermore we assume that the roundoff errors ¢ attributable to
different operations are independent random variables. By . we denote the
expected value and by ¢? the variance of the above round-off distribution.
They satisfy the general relationship

62 = E(e — E(g))* = E(e?) — (E())* = pe2 — p2.
Assuming a uniform distribution in the interval [ —eps, eps], we get

eps
1 2

(1.5.1) u,=E(e)=0, o?=E(e?) t? dt = § eps? =:&%.

- z_épé * —eps
Closer examinations show the roundoff distribution to be not quite uniform
[see Sterbenz (1974), Exercise 22, p. 122]. It should also be kept in mind that
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the ideal roundoff pattern is only an approximation to the roundoff patterns
observed in actual computing machinery, so that the quantities u, and 62
may have to be determined empirically.

The results x of algorithms subjected to random roundoff errors become
random variables themselves with expected values u, and variances 62,
connected again by the basic relation

02 = E(x — E(x))? = E(x*) — (E(x))? = ez — i2.

The propagation of previous roundoff effects through elementary operations
is described by the following formulas for arbitrary independent random
variables x, y and constants a, f € R:

Hax+py = E(O!X + ﬂy) = dE(X) + ﬂE(y) =oau, + ﬂuy’
(15.2)  0Zespy = E((ox £ By)’) — (E(xx £ By))?
= o’E(x — E(x))* + B*E(y — E(y))* = o*02 + B*a2.

The first of the above formulas follows by the linearity of the expected-value
operator. It holds for arbitrary random variables x, y. The second formula is
based on the relation E(xy) = E(x)E(y), which holds whenever x and y are
independent. Similarly, we obtain for independent x and y

Hxxy = E(x x y) = E(X)E(y) = pxbty,
(153) O2xy=E(x x y = E(X)E(Y))* = peatya — H31
= olo? + plol + plol.
ExampLE. For calculating y = a> — b? (see Example 2 in Section 1.3) we find, under

the assumptions (1.5.1), E(a) = a, 62 =0, E(b)= b, g7 =0, and using (1.5.2) and
(1.5.3), that

= a*(1 + &), E(m)=a? o2 =a*s,
72 = b*(1 + &), E(n,)=b?, o2 = b*e,
y=(m—n)1 +&)  E()=E(m —n)E(l +e)=a’—b’
(11, 2, €3 are assumed to be independent),
0} = 0n-n 08 ey + My -y OF ey + ME 4630y -y
= (02, + 02)& + (a® — b*)*&® + (a2, + o2))
= (a* + b*)e* + [(a® — b?)* + a* + b*e%
Neglecting £* compared to & yields
ol = ((a> — b?)* + a* + b*)E2.
For a:=0.3237, b:=0.3134, eps =5 x 10™* (see Example 5 in Section 1.3), we find
o, = 0.144¢ = 0.000 0415

which is close in magnitude to the true error Ay = 0.000 01787 for 4-digit arithmetic.
Compare this with the error bound 0.000 10478 furnished by (1.3.17).
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We denote by M(x) the set of all quantities which, directly or indirectly,
have entered the calculation of the quantity x. If M(x) N M(y) # & for the
algorithm in question, then the random variables x and y are in general
dependent.

The statistical roundoff error analysis of an algorithm becomes extremely
complicated if dependent random variables are present. It becomes quite
easy, however, under the following simplifying assumptions:

(1.54)

(@) The operands of each arithmetic operation are independent random
variables.

(b) In calculating variances all terms of an order higher than the smallest
one are neglected.

(c) All variances are so small that for elementary operations t in first-order
approximation, E(x T y) = E(x) t E(y) = p, T -

If in addition the expected values u, are replaced by the estimated values x,
and relative variances &2 = g2 /u2 ~ ¢ /x* are introduced, then from (1.5.2)

and (1.5.3) [compare (1.2.6), (1.3.5)],
2 2
(i) &2 + (X) & + &,
z z

z=fl(x x y): & =&+ ¢ +&,

z="l(x +y): &

z=fl(x/y): & =& +e +&.

It should be kept in mind, however, that these results are valid only if the
hypotheses (1.5.4), in particular (1.5.4a), are met.

It is possible to evaluate above formulas in the course of a numerical
computation and thereby to obtain an estimate of the error of the final
results. As in the case of interval arithmetic, this leads to an arithmetic of
paired quantities (x, ¢2) for which elementary operations are defined with
the help of the above or similar formulas. Error bounds for the final results r
are then obtained from the relative variance ¢? , assuming that the final error
distribution is normal. This assumption is justified inasmuch as the distribu-
tions of propagated errors alone tend to become normal if subjected to many
elementary operations. At each such operation the nonnormal roundoff
error distribution is superimposed on the distribution of previous errors.
However, after many operations, the propagated errors are large compared
to the newly created roundoff errors, so that the latter do not appreciably
affect the normality of the total error distribution. Assuming the final error
distribution to be normal, the actual relative error of the final result r is
bounded with probability 0.9 by 2e,.
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EXERCISES FOR CHAPTER 1

1. Show that with floating-point arithmetic of t decimal places
rd(a):Ti-s with |z] <5 x 107

holds in analogy to (1.2.2). [In parallel with (1.2.6), as a consequence,
fl{a + b) = (a* b)/(1 +¢) with |¢|] <5x 107" for all arithmetic operations
* = +’ —, X, /]

2. Let a, b, ¢ be fixed-point numbers with N decimal places after the decimal point,
and suppose 0 < a, b, ¢ < 1. A substitute product a * b is defined as follows: Add
107"/2 to the exact product a - b, and then delete the (N + 1)-st and subsequent
digits.

(a) Give a bound for |(a * b) * ¢ — abc].
(b) By how many units of the Nth place can (a * b) * ¢ and a * (b * c) differ?

n
3. Evaluating ) q; in floating-point arithmetic may lead to an arbitrarily large
i=1
relative error. If, however, all summands a; are of the same sign, then this relative
error is bounded. Derive a crude bound for this error, disregarding terms of
higher order.

4. Show how to evaluate the following expressions in a numerically stable fashion:

1 1-x
T+2x 13x Orlxl<t
[
X+ —— x—l for x > 1,
X X
1 -
22 forx 40, [x| <1

5. Suppose a computer program is available which yields values for arcsin y in
floating-point representation with ¢ decimal mantissa places and for |y| <1
subject to a relative error ¢ with |¢] <5 x 107" In view of the relation

. X
arctan x = arcsin - 5,
:;l +x

this program could also be used to evaluate arctan x. Determine for which values
x this procedure is numerically stable by estimating the relative error.

6. For given z, the function tan(z/2) can be computed according to the formula

_ 1/2
tan = i(ﬂ .
2 1 4+ cosz

Is this method of evaluation numerically stable for z = 0, z = n/2? If necessary,
give numerically stable alternatives.
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7.

9.

10.

11.

1 Error Analysis

The function
1
Jeos? ¢ + k2 sin? ¢

flo, k)=
is to be evaluated for 0 < ¢ < m/2,0 < k. < 1.
The method
k?=1—k2,

1
s k)= ————
flo- k) J1—k*sin? ¢

avoids the calculation of cos ¢ and is therefore faster. Compare this with the
direct evaluation of the original expression for f (¢, k.) with respect to numerical
stability.

. For the linear function f(x):=a + bx, where a # 0, b # 0, compute the first

derivative D, f(0) = f'(0) = b by the formula

0= LB 1)

in binary floating-point arithmetic. Suppose that a and b are binary machine
numbers, and h a power of 2. Multiplication by h and division by 2h can be
therefore carried out exactly. Give a bound for the relative error of D, f(0). What
is the behavior of this bound as h — 0?

The square root =+ (u + iv) of a complex number x + iy with y # 0 may be
calculated from the formulas

N NS
- 2 ’
y

V==

2u

Compare the cases x > 0 and x < 0 with respect to their numerical stability.

Modify the formulas if necessary to ensure numerical stability.

The variance S of a set of observations xy, ..., X, is to be determined. Which of
the formulas

§? = n%f(glxlz - n.’—(z),
1

1 n - . _ 1 n
;—_ i l-=z1 (x,' - x) with x n izlxi

$?=
is numerically more trustworthy?
The coefficients a,, b,(r =0, ..., n) are, for fixed x, connected recursively:

b, = ap;

(*) forr=n-1,n-2,...,0: b,==xb,,y +a,.
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(a) Show that the polynomials

Az)= 'Z":Oa, 7, B(z)= ﬁil b,z""!
satisfy
A(z) = (z — x)B(z) + bo.

(b) Suppose A(x)=bo is to be calculated by the recursion (*) for fixed x in
floating-point arithmetic, the result being by. Show, using the formulas
(compare Exercise 1)

fl(u+v)=%::_;£, |o| <eps,
u-v
fl(u-v)=1+n, |m| < eps,

the inequality
’ C 7
|A) = Bol <32 o (oo = (6],
where ey is defined by the following recursion:
&= a2

forr=n—1,n—~2..0; e:=|x|e+ + |b|

Hint: From
b,=a,,
o , _ xby .y
p.=1l(xb,, ) = 1+7m,, r=n-1,...,0,
, y +a, ’
br’=ﬂ(l7r+a')=p1_+0: =xb,1 +a, + 4,
derive
5r=_xb'+l_1&i‘_—o'b’ (r=n-1,...,0);
r 1 Tr+1 mr ’ ’ '

then show by = %0 (a + d)x*, 8, =0, and estimate Y5 |5 | x |*.

12. Assuming Earth to be spherical, two points on its surface can be expressed in
Cartesian coordinates

pi = [xi, yi, zi] = [r cos a; cos B;, r sin «; cos B;, r sin B), i=12

where r is the earth radius and «;, B; are the longitudes and latitudes of the two
points p;, respectively. If

cos § = ~—= = cos(a; — a;) cos f; cos B2 + sin B, sin B,
r

then rd is the great-circle distance between the two points.
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(a) Show that using the arccos function to determine § from the above expres-
sion is not numerically stable.
(b) Derive a numerically stable expression for 4.
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Interpolation

Consider a family of functions of a single variable x,
D(x; ag, ..., ay),

having n + 1 parameters aq, ..., a,, whose values characterize the indivi-
dual functions in this family. The interpolation problem for @ consists of
determining these parameters g; so that for n + 1 given real or complex pairs
of numbers (x;, f;),i=0, ..., n, with x; # x, for i £k,

(D(xi;ao,...,a")=ﬁ, i=0,...,n,

holds. We will call the pairs (x;, f;) support points, the locations x; support
abscissas, and the values f; support ordinates. Occasionally, the values of
derivatives of @ are also prescribed.

The above is a linear interpolation problem if @ depends linearly on the
parameters a;:

®(x; ap, ..., a,) = aoDo(x) + a; Py (x) + - + a, D (x).

This class of problems includes the classical one of polynomial interpolation
(Section 2.1),

@(X; Agy -.-r Q) = A + Ay X + a3 x> + - + a,x",
as well as trigonometric interpolation (Section 2.3),
O(x; ag, ..., a,) =ap + a, € + ae* + - + g, (2= —1)

In the past, polynomial interpolation was frequently used to interpolate
function values gathered from tables. The availability of modern computing
machinery has reduced the need for extensive table lookups. However, poly-
nomial interpolation is also important as the basis of several types of numer-

37
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ical integration formulas in general use. In a more modern development,
polynomial and rational interpolation (see below) are employed in the con-
struction of “extrapolation methods ” for integration, differential equations,
and related problems (see for instance Sections 3.3 and 3.4).

Trigonometric interpolation is used extensively for the numerical Fourier
analysis of time series and cyclic phenomena in general. In this context, the
so-called “fast Fourier transforms ” are particularly important and success-
ful (Section 2.3.2).

The class of linear interpolation problems also contains spline interpola-
tion (Section 2.4). In the special case of cubic splines, the functions @ are
assumed to be twice continuously differentiable for x € [x,, x,] and to coin-
cide with some cubic polynomial on every subinterval [x;, x;,,] of a given
partition xq < X; < *** < X,,.

Spline interpolation is a fairly new development of growing importance.
It provides a valuable tool for representing empirical curves and for approxi-
mating complicated mathematical functions. It is increasingly used when
dealing with ordinary or partial differential equations.

Two nonlinear interpolation schemes are of importance: rational
interpolation,

ag+a;x+ 4+ a,x"

D(x; aq, ""a"’bo""’b"')zb0+b‘x+--~+b T

and exponential interpolation,
D(x; gy ...\ Qyy Aoy ooey Ay) = Qo€ + @™ + -+ + a et

Rational interpolation (Section 2.2) plays a role in the process of best
approximating a given function by one which is readily evaluated on a
digital computer. Exponential interpolation is used, for instance, in the
analysis of radioactive decay.

Interpolation is a basic tool for the approximation of given functions. For
a comprehensive discussion of these and related topics consult Davis (1965).

2.1 Interpolation by Polynomials

2.1.1 Theoretical Foundation: The Interpolation Formula
of Lagrange

In what follows, we denote by I, the set of all real or complex polynomials
P whose degrees do not exceed n:

P(x)=ao+a;x + "+ a,x"

(2.1.1.1) Theorem For n + 1 arbitrary support points
(x;» £3), i=0,...,n x;#x fori#k,
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there exists a unique polynomial P € I, with

P(x)=f,, i=0,1,....n

PrOOF. Uniqueness: For any two polynomials P,, P, € I, with
Py(x;) = Py(x;) =1, i=01,...,n

the polynomial P :=P; — P, € I1, has degree at most 7, and it has at least
n + 1 different zeros, namely x;, i =0, ..., n. P must therefore vanish iden-
tically, and P, = P,.

Existence: We will construct the interpolating polynomial P explicitly
with the help of polynomials L; € I1,,i =0, ..., n, for which

1 ifi=k,
(2.1.1.2) Li(x) = 0y = {0 ;f i + k.

The following Lagrange polynomials satisfy the above conditions:

(x = x0) oo (X = xi—1)(X — Xi4q) --- (x — x,,)

Li(x):=
(2113) (xi - xO) (xl' - xi~—l)(xi - xin+ 1) (x,- — xn)
= (T_ai%m with w(x):= [ (- x)

Note that our proof so far shows that the Lagrange polynomials are
uniquely determined by (2.1.1.2).

The solution P of the interpolation problem can now be expressed
directly in terms of the polynomials L, , leading to the Lagrange interpolation
SJormula:

The above interpolation formula shows that the coefficients of P depend
linearly on the support ordinates f;. While theoretically important, Lagran-
ge’s formula is, in general, not as suitable for actual calculations as some
other methods to be described below, particularly for large numbers n of
support points. Lagrange’s formula may, however, be useful in some situa-
tions in which many interpolation problems are to be solved for the same

support abscissae x;, i =0, ..., n, but different sets of support ordinates f;,
i=0,...,n

ExAMPLE. Given for n = 2:

x,-013
71132

Wanted: P(2), where P e I, P(x;))=fifori=0, 1, 2.
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Solution:
_x=1(x-3) _(x—=0)x —3) _x=0)x—1)
L= eoe-y BM=Eormy YT Eoe-
PR =1 Lo +3 Li2)+2 L) =1- 50 +3-1+2- 3 =2

2.1.2 Neville’s Algorithm

Instead of solving the interpolation problem all at once, one might consider
solving the problem for smaller sets of support points first and then updating
these solutions to obtain the solution to the full interpolation problem. This
idea will be explored in the following two sections.
For a given set of support points (x;, f;),i=0, 1, ..., n, we denote by
P . € I,

igiy ... |

that polynomial in IT, for which
Pl'()il...ik(xij)zfl:j’ ]=07 1, ""k'
These polynomials are linked by the following recursion:

(2.1.2.1a) Pix) =1,

(21210) Py, g0 = 57 0P f~(’2 ‘_(i = %Pty ipo ()

io

PROOF. (2.1.2.1a) is trivial. To prove (2.1.2.1b), we denote its right-hand side
by R(x). and go on to show that R has the characteristic properties of
P;;, ..;,- The degree of R is clearly no greater than k. By the definitions of

Pio...ik-l and Pil o ]
R(xio) = Pio i,,-l(xio) = io?
R(xik) = Pil ik(xik) = ﬂ,,,
and
R(xij) = (xij - xio)ﬁj - (xij - xik)ﬁj =j'ij

x,-h - xio

for j=1,2,..., k—1. Thus R=P,;, ., in view of the uniqueness of

polynomial interpolation [Theorem (2.1.1.1)]. O

Neville’s algorithm aims at determining the value of the interpolating
polynomial P for a single value of x. It is less suited for determining the
interpolating polynomial itself. Algorithms that are more efficient for the
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latter task, and also more efficient if values of P are sought for several
arguments x simultaneously, will be described in Section 2.1.3.

Based on the recursion (2.1.2.1), Neville’s algorithm constructs a symme-
tric tableau of the values of some of the partially interpolating polynomials

Pi, ..; for fixed x:
k=0 1 2 3
Xo fo = Po(x)
Pox(x)
Xt f1=P(x) Pyy2(x)

(2.122) — Pya(x) Poy23(x)
Xy | f2=Pax) szs_(x)

X3 f3 = Ps(x)

The first column of the tableau contains the prescribed support ordinates f;.
Subsequent columns are filled by calculating each entry recursively from its
two “neighbors” in the previous column according to (2.1.2.1b). The entry
Py,3(x), for instance, is given by

(x = x4 )Pa3(x) = (x - xs)sz(x).
X3 — X,

Pas(x) =

ExaMPLE. Determine Py,,(2) for the same support points as in section 2.1.1.

k=0 1 2

Xo=0 fo=Po(2)=1

Poi(2)=5

Xy =1 fi=P,(2)=3 Py12(2) =42
P12(2)=%

X =3 fi=Py(2)=2

2-0-3-@2-1)-1_

P01(2)= 1-0 5,
P12(2)=‘(2_ 1)-3:(12—3)-3 =%,
Pous(2) = 2-0)- 5;2_—0(2 -3)-5 =?'

We will now discuss slight variants of Neville’s algorithm, employing a
frequently used abbreviation,

(2.1.2.3) Tiviw ' =Piiva, . ivk-
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The tableau (2.1.2.2) becomes

Xo Jo=Tyo
T,
X1 Si=To T;,
(2.1.24) T, >, 3
X2 fi=T \Tsz
\Tsx/
X3 fi= Tso/

The arrows indicate how the additional upward diagonal T;,, T;,, ..., T;; can
be constructed if one more support point (x;, f;) is added.
The recursion (2.1.2.1) may be modified for more efficient evaluation:

(2125a) T =,

T, := (x — x.;-;)T:,k-l :(x = x)Timqk-1
=k hktl A it Lkl

Xi = Xj—y
(2.1.2.5b) . ,
=T, +2A L Lkl kg, i=0,1,...,n
X = Xix -1
X — X;

The following ALGOL algorithm is based on this modified recursion:

for i :==0 step 1 until n.do
begin £[i] = [l;
for j:=i — 1 step — 1 until 0 do
tli]=tlj + 1]+ ([ + 1] = e[j]) x (2 — x[D)/(x[i] - x[])
end;
After the inner loop has terminated, t[j] = T; ;_;, 0 <j < i. The desired
value T,, = P,, ., of the interpolating polynomial can be found in t[0].
Still another modification of Neville’s algorithm serves to improve some-
what the accuracy of the interpolated polynomial value. Fori=0,1, ..., n,
let the quantities Q;,, D, be defined by

Qio =Dy =1,

Q= Ty~ T x-1 ‘

1<k<i
Dy =Ty — 7;—1.1(—1'

The recursion (2.1.2.5) then translates into

(2.1.2:6)
X;— X
Qi =(Di x-1 — Qi~1.kvl)m
1<k<i, i=0,1,...,n
Xi—g— X
D.:=(D., ,—0, ,. )2k —
ik ( i k=1 Ql 1,k l)xi—k‘xi
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Starting with Q,, :=D;, :=f;, one calculates Q;,, D; from the above recur-
sion. Finally

T, =f+ kéQ,,k.

If the values fy, ..., f, are close to each other, the quantities Q; will be small
compared to f;. This suggests forming the sum of the “corrections”
Qn1» ---» Qn, first [contrary to (2.1.2.5)] and then adding it to f,, thereby
avoiding unnecessary roundoff errors.

Note finally that for x =0 the recursion (2.1.2.5) takes a particularly
simple form

@127a)  To=f;

1

Tovc1—Tio ke
(2-1-2.7b) 1;.’( = ’I;,k—l + i,k xl i—-1,k—1
i—k

, 1

A
w
A

-1
Xi

—as does its analog (2.1.2.6). These forms are encountered when applying
extrapolation methods.

For historical reasons mainly, we mention Aitken’s algorithm. 1t is also
based on (2.1.2.1), but uses different intermediate polynomials. Its tableau is
of the form

Xo | Jfo=Po(x)

X1 fi = Py(x) Poy(x)

X2 f2 = P(x) Po,(x) Poy2(x)

X3 f3=P;(x) Pos3(x) Po13(x) Poy23(x)

Xs | fa=Pa4x) Pos(x) Poy4(x) Poy24(x) Po1234(x)

The first column again contains the prescribed values f;. Each subsequent
entry derives from the previous entry in the same row and the top entry in
the previous column according to (2.1.2.1b).

2.1.3 Newton’s Interpolation Formula: Divided Differences

Neville’s algorithm is geared towards determining interpolating values
rather than polynomials. If the interpolating polynomial itself is needed, or if
one wants to find interpolating values for several arguments &; simultan-
eously, then Newton’s interpolation formula is to be preferred. Here we
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write the interpolating polynomial P € I1,,, P(x;)=f;,i=0, 1, ..., n, in the
form

P(x) = Po; ...4(x)
@131) = g + iy (x — xo) + ax — Xo)(x — x;) +
+ a,(x = x0) ... (X — Xp—1):

Note that the evaluation of (2.1.3.1) for x = £ may be done recursively as
indicated by the following expression:

PE)= (.. (@& = xu1) + @s- )€ — Xa-2) + " + @1)(E — X0) + G-

This requires fewer operations than evaluating (2.1.3.1) term by term. It
corresponds to the so-called Horner scheme for evaluating polynomials
which are given in the usual form, i.e. in terms of powers of x, and it shows
that the representation (2.1.3.1) is well suited for evaluation.

It remains to determine the coefficients g; in (2.1.3.1). In principle, they
can be calculated successively from

Jo = P(xo) = ao,
f1=P(x;) = ao + ay(x; — xo),

J2 = P(x3) = ao + ay(x3 — xo) + az(x; — xo)(x2 — x,),

This can be done with n divisions and n(n — 1) multiplications. There is,
however, a better way, which requires only n(n + 1)/2 divisions and which
produces useful intermediate results.

Observe that the two polynomials P;;, _;(x)and P,;, ; _,(x)differ by a
polynomial of degree k with k zeros x;, x;,, ..., x;,_,, since both polyno-
mials interpolate the corresponding support points. Therefore there exists a
unique coefficient

(2132) fioiyi»  k=0,1,....n,
such that
(2.13.3)

Piis o iX) = Pigiy i () F frgiy (X = xi)(x — x3,) oo (= X, ).
From this and from the identity P; (x) = f;, it follows immediately that
(2134) Py, u(x) =fio + figi,(x — x;0) + -+

F gy X = X )X — x3,) - (x = x;, )

is a Newton representation of the partially interpolating polynomial
P;;, ...i,- The coefficients (2.1.3.2) are called k th divided differences.
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The recursion (2.1.2.1) for the partially interpolating polynomials trans-
lates into the recursion

— ﬁl aee i|, _ﬂo... ik—l
(2.1.3.5) Sioiy e = P
for the divided differences, since by (2.1.3.3), f;, ., and f; _,,_, are the
coefficients of the highest terms of the polynomials P; ;, ; and P;; ., _,,

respectively. The above recursion starts for k = 0 with the given support
ordinates f;, i=0, ..., n. It can be used in various ways for calculating
divided differences f; , fi,i,» - --» fioiy ... i,» Which then characterize the desired
interpolating polynomial P = P;; ;.

Because the polynomial P;;, , is uniquely determined by the support
points it interpolates [Theorem (2.1.1.1)], the polynomial is invariant to any
permutation of the indices iy, iy, ..., i, and so is its coefficient f; ; _;, of x*.
Thus:

(2.1.3.6). The divided differences f,;, ..., are invariant to permutations of the
indices iy, iy, ..., i If

(jOajla "'ajk) = (isoa isp LR isk)
is a permutation of the indices iy, iy, ..., iy, then
f:iojl wee jk =f;.0i1 ik‘
If we choose to calculate the divided differences in analogy to Neville’s

method—instead of, say, Aitken’s method—then we are led to the following
tableau, called the divided-difference scheme:

k=0 k=1 k=2 k=n

Xo fo
Jo1
Xy N Jo12
(2.1.3.7) ' J12 - .
X2 S ) : ) Jo12..n
fn—Z,n—l,n
f;t— 1,n

Xy S

The entries in the second column are of the form

whh . _hh
01 xl_xo’ 12 xz_xlv [RRE}
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those in the third column,

Jorz =%:£—0;, f123 =—-**_f;::£112,
Clearly,
P(x)= Poy . a(x)
= fo + forlx — Xo) + - + for ..alx — Xo)(x — x1) ... (x = X4_)
is the desired solution to the interpolation problem at hand. The coefficients

of the above expansion are found in the top descending diagonal of the
divided-difference scheme (2.1.3.7).

ExXAMPLE. With the numbers of the example in sections 2.1.1 and 2.1.2, we have:

X0=0 fo=1
fo1=2

xyp=1 fi=3 forz = —%
f12=—%

x2—3 fr=2

Pora(x) =1+ 2(x — 0) — $(x — O)(x — 1),
Poa2)=(-32-1)+2)2-0)+1=4

Instead of building the divided-difference scheme column by column, one
might want to start with the upper left corner and add successive ascending
diagonal rows. This amounts to adding new support points one at a time
after having interpolated the previous ones. In the following ALGOL
procedure, the entries in an ascending diagonal of (2.1.3.7) are found, after
each increase of i, in the top portion of array t, and the first i coefficients
fo1...; are found in array a.

for i :==0 step 1 until n do
begin 1[i] = /[;
for j:=i — 1 step — 1 until 0 do
tj]= (el + 1] — DL — x[i1);
ali] =1t[0]

end;

Afterwards, the interpolating polynomial (2.1.3.1) may be evaluated for any
desired argument z:

p=a[n];
for i:=n — 1 step — 1 until 0 do
p=p x (z — x[i]) + alil;
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Some Newton representations of the same polynomial are numerically
more trustworthy to evaluate than others. Choosing the permutation so that

Ii—xi,, >Ié"xi,‘_J, k=0,1,...,n—1,

dampers the error (see Section 1.3) during the Horner evaluation of
(2.1.3.8)

P(x)= Piy i, (X) = fig + figiy 06 = Xi0) + 7+ figiy i — Xi0) - (x — x;,_,)-

All Newton representations of the above kind can be found in the single
divided-difference scheme which arises if the support arguments x;,
i=0,...,n, are ordered by size: x; < x;4, for i=0,..., n — 1. Then the
preferred sequence of indices i, iy, ..., i, is such that each index i, is
“adjacent” to some previous index. More precisely, either i, = min{i;|0 <
l<k}—1 or i,=max{j;|0<!<k}+1 Therefore the coefficients of
(2.1.3.8) are found along a zigzag path—instead of the upper descending
diagonal—of the divided-difference scheme. Starting with f; , the path
proceeds to the upper right neighbor if i, < i,_,, or to te lower right neigh-
bor if i, > i,_,.

ExAMPLE. In the previous example, a preferred sequence for £ = 2 is

i0=1,i1=2,i2=0.

The corresponding path in the divided difference scheme is indicated below:

xo=0 fo=1
f01=2

xp=1 f1=3 Joi1z = —%
f12=—%

x2=3 f2=2

The desired Newton representation is:

Pyyo(x) =3 — 3(x — 1) — 3(x — 1)(x - 3),
Pi2o(2)=(-32-3)-H2-1)+3=4

Frequently, the support ordinates f; are the values f(x;) = f; of a given
function f'(x), which one wants to approximate by interpolation. In this case,
the divided differences may be considered as multivariate functions of the
support arguments X;, and are historically written as

fXig -0 X3}
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These functions satisfy (2.1.3.5). For instance,
f[x0] Ef(xo)’
Sl = f [?FQ]

= _ Sx1) = f(xo)
flxo, x,] = — =*x;:;ﬁ)’
f[xo, Xy, xz] = f[xls xx22] :_i!:)xo, Xl]

S x2)(xy = xo) — f(x1)(x2 = Xo) +f (xo0)(x2 — 1)

(g = Xx0)(x2 — x0)(x2 — xy)

b

Xgy ooy Xl — S 1 X0y ooy Xp
fleonxpn o x] = 0 50 =SB0 o xc].
Xy — Xo

Also, (2.1.3.6) gives immediately:

(2.1.3.9) Theorem. The divided differences f[x;,, ..., x;,] are symmetric func-
tions of their arguments, i.e., they are invariant to permutations of the

X X

ios °° i

If the function f(x) is itself a polynomial, then we have the

(2.1.3.10) Theorem. If f(x) is a polynomial of degree N, then

fIx0s .-, %] =0
for k > N.

Proor. Because of the unique solvability of the interpolation problem
(Theorem 2.1.1.1), P, . .(x)=f(x) for k > N. The coefficient of x* in
Py, ... «(x) must therefore vanish for k > N. This coefficient, however, is given
by f[xo, ..., x;] according to (2.1.3.3). O

EXAMPLE. f(x) = x2.

X; k=0 1 2 3 4
0 0
1
1 1 1
3 0
2 4 1 0
5 0
3 9 1
7
4 16
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If the function f(x) is sufficiently often differentiable, then its divided
differences f[x,, ..., x,] can also be defined if some of the arguments x;
coincide. For instance, if f (x) has a derivative at x,, then it makes sense for
certain purposes to define

fIxo0,5 xo] =1"(xo)-

For a corresponding modification of the divided-difference scheme (2.1.3.7)
see Section 2.1.5 on Hermite interpolation.

2.14 The Error in Polynomial Interpolation

Once again we consider a given function f(x) and certain of its values

fi=1(x), i=01,...,n

which are to be interpolated. We wish to ask how well the interpolating
polynomial P(x) = P, __,(x) with

P(x;) = f;, i=0,1,...,n

reproduces f (x) for arguments different from the support arguments x; . The
error

f(x) — P(x),

where x # x;, i = 0, 1, can clearly become arbitrarily large for suitable func-
tions f unless some restrictions are imposed on f. Under certain conditions,
however, it is possible to bound the error. We have, for instance:

(2.1.4.1) Theorem. If the function f has an (n + 1)st derivative, then for every
argument X there exists a number & in the smallest interval I[x,, ..., x,, X]
which contains x and all support abscissas x;, satisfying

. oy @(X) ")
f(x)_POI...n(x)—-_ (n+l)! ’
where

w(x) = (x — xo)(x — xy) ... (x — x,)-

ProoOF. Let P(x):= Py, _,(x) be the polynomial which interpolates the
function at x;,i=0, 1, ..., n,and suppose x # x; (for x = x; there is nothing
to show). We can find a constant K such that the function

F(x):=f(x) — P(x) — Ko(x)
vanishes for x = X:

F(%) = 0.
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Consequently, F(x) has at least the n + 2 zeros
XQs ey Xps X

in the interval I[x,, ..., x,, X]. By Rolle’s theorem, applied repeatedly, F'(x)
has at least n + 1 zeros in the above interval, F”(x) at least n zeros, and
finally F®* !(x) at least one zero ¢ € I[x,, ..., X,, X).
Since P"* Y(x) = 0,
FODE) = f*DE) -~ Kn+ 1) =0
or

AR
K=

This proves the proposition

15) = PR) = Kol) = o200 0 ), o

A different error term can be derived from Newton’s interpolation for-
mula (see Section 2.1.3):

P(x) = Poy . (%) = f[x0) + fx0, x1]J(x — xo) + -
+ %0, Xg0 ooy X J(X = X0) +-v (X — Xy 1)

Here f[x,, x;, ..., x,] are the divided differences of the given function f. If in
addition to the n + 1 support points

(xi, fi): fi=f(x) i=0,1,...,n
we introduce an (n + 2)nd support point

Gnt 1ot 1)t Xus1 =% fos1=f(X)
where

X # x;, i=0,...,n
then by Newton’s formula
J(X)=Po_.ns1(X)= Po__ a(X) + f[x0, ..., Xa, X]Joo(X),

or

(2.14.2) f(X) = PoalX) = (X)f[x0, ---» Xp> X}

The difference on the left-hand side appears in Theorem (2.1.4.1), and since
o(x) # 0, we must have

f(n+ 1)(6)

mr) for some ¢ € I[xq, ..., x,, X].
n !

flxo0s o5 x5, X] =
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This also yields
@)

n!

(2.143)  flxo,---» Xn) = for some ¢ € I[xq, ..., X,),

which relates derivatives and divided differences.

EXAMPLE. f(x) = sin x:

xi=%’ i=0,1,2,314’5’ n=5’

sin x — P(x) = (x — Xo)(x — x1) ... (x — x5)—

|sin x — P(x)| < 3o} (x — xo)(x — x1) ... (x — xs5)}| ===

We end this section with two brief warnings, one against trusting the

interpolating polynomial outside of I[x,, ..., X,] and one against expecting
too much of polynomial interpolation inside I[x,, ..., X,].
In the exterior of the interval I[x,, ..., x,}, the value of |w(x)| in

Theorem (2.1.4.1) grows very fast. The use of the interpolation polynomial P
for approximating f at some location outside the interval
I[xo, ..., x,]—called extrapolation—should be avoided if possible.

Within I[x,, ..., x,] on the other hand, it should not be assumed that
finer and finer samplings of the function f will lead to better and better
approximations through interpolation.

Consider a real function f which is infinitely often differentiable in a
given interval [a, b]. To every interval partition A ={a=x, < x; < <
x, = b} there exists an interpolating polynomial P, € II, with P,(x;) = f; for
x; € A. A sequence of interval partitions

A,=fa=x{ <x{” < - <xf = b}

gives rise to a sequence of interpolating polynomials P,_. One might expect
the polynomials P, to converge toward f if the fineness

] =max |2, - 57|
i

of the partitions tends to 0 as m — oo. In general this is not true. For
example, it has been shown for the functions

f=y, s [BH=[-55) o f@=y% [ab]=(0.1]

that the polynomials P, do not converge pointwise to f for arbitrarily fine
uniform partitions A,,, x™ =a + i(b — a)/m,i=0, ..., m.
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2.1.5 Hermite Interpolation

Consider the real numbers &;, y¥, k=0,1,...,n,— 1,i=0, 1, ..., m, with

§o <&y <<l

The Hermite interpolation problem for these data consists of determining a
polynomial P whose degree does not exceed n, where

n+1:=>3%n,
i=0

and which satisfies the following interpolation conditions:
(2.1.5.1) P®()= y¥, k=0,1,...,m;,—1, i=0,1,....m

This problem differs from the usual interpolation problem for polynomials
in that it prescribes at each support abscissa &; not only the value but also
the first n; — 1 derivatives of the desired polynomial. The polynomial inter-
polation of Section 2.1.1 is the special case n,=1,i =0, 1,..., m.

There are exactly ) n;=n+1 conditions (2.1.5.1) for the n+ 1
coefficients of the interpolating polynomial, leading us to expect that the
Hermite interpolation problem can be solved uniquely:

(2.1.5.2) Theorem. For arbitrary numbers &o <&y <+ <&,, ¥, k=0,
1,...,m;—1,i=0,1, ..., m, there exists precisely one polynomial

PeM, n+1:=Yn,
i=0
which satisfies (2.1.5.1).

Proor. We first show uniqueness. Consider the difference polynomial
Q(x) = P,(x) — P,(x) of two polynomials P,, P, € I, for which (2.1.5.1)
holds. Since

Q(k)(éi)=0, k=0, 1,...,n,——1, l=0, 1,...,m,

&, is at least an n;-fold root of Q, so that Q has altogether ) n, = n + 1 roots,
each counted according to its multiplicity. Thus Q must vanish identically,
since its degree is less than n + 1.

Existence is a consequence of uniqueness: For (2.1.5.1) is a system of n
linear equations for n unknown coefficients ¢; of P(x)=co+c¢;x+
-+« + ¢, x". The matrix of this system is not singular, because of the uni-
queness of its solutions. Hence the linear system (2.1.5.1) has a unique
solution for arbitrary right-hand sides y®. O

Hermite interpolating polynomials can be given explicitly in a form ana-
logous to the interpolation formula of Lagrange (2.1.1.4). The polynomial
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P € I1, given by

m m—1

(2.1.5.3) P(x)=3Y ¥ y¥Ly(x)

i=0 k=0
satisfies (2.1.5.1). The polynomials L € I1, are generalized Lagrange poly-

nomials. They are defined as follows: Starting with the auxiliary
polynomials

(x“‘fi)k - (X—éj)"j .
Li(x) = , 0<is<m, 0<k<n
O e,
J#i
[compare (2.1.1.3)], put
Lin-s()=hnos() i=0,1...m,

and recursively for k=n, — 2, n, — 3, ..., 0,
n—1
Li(x) = ly(x) - Z I5(&)L(x).
v=k+1
By induction
[l ifi=jand k=g,

(CATP A .
L&) |0 otherwise

Thus P in (2.1.5.3) is indeed the desired Hermite interpolating polynomial.

In order to describe alternative methods for determining P, it will be
useful to represent the data &, y®,i=0,1,...,mk=0,1,....,n,— 1,ina
somewhat different form as a sequence %, = {(x;, fi)}i=o. ... Of n + 1 pairs
of numbers. The pairs

(XO st)’ (xlvfl)’ AR ] (x'lo- 1> f;lo— l)’ (xno H f;no)9 cees (xmfn)
of %, denote consecutively the pairs
(‘50’ yg)) s (60’ y(Ol))9 crey (60’ yg”_l))a (51, y(lo))’ ey (ém’ yf.'.'”'-”).

Note that xo < x; < - < x, and that the number &; occurs exactly n; times
in the sequence {x;};_o. . .-

EXAMPLE 1. Suppose m =2, ng = 2, n; = 3 and
0=0, yW=-1 yh=-2
Li=1, =0, =10, @ =40
This problem is described by the sequence F4 = {(x;, fi)}izo....a:
(xo.fo)=(0, =1),  (xu. f1)=(0, =2),  (x2./2)=(1,0),
(x3.f3) = (1, 10), (x4, fa) = (1, 40).
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Given any Hermite interpolation problem, it uniquely determines a se-
quence #,, as above. Conversely, every sequence #, = {(x;, fi)}i=o, ... » Of
n + 1 pairs of numbers with x, < x; < -+ < x, determines a Hermite inter-
polation problem, which will be referred to simply as #,. It also will be
convenient to denote by

[x — xoV
the polynomials

[x —xo]°:=1,
(2.1.5.4) -
[x = xo = (x — xo)(x — x1) .. (x = x;-4)
of degree j.
Our next goal is to represent the polynomial P which interpolates %, in
Newton form [compare (2.1.3.1)]:

(2.1.5.5) P(x)=ao + a,[x — xo] + a,[x — xo]* + -+ + a,[x — xoI"
and to determine the coefficients g; with the help again of divided differences
(2.1.5.6) a = f[xo, X1, -+, Xi), k=0,1,...,n

However, the recursive definition (2.1.3.5) of the divided differences has to be
modified because there may be repetitions among the support abscissae
xo € x; £+ < x,. For instance, if x, = x,, then the divided difference
fIxo0, x;] can no longer be defined as (f[xo] — f[x,])/(x; — Xo).

The extension of the definition of divided differences to the case of
repeated arguments involves transition to a limit. To this end, let

lo<ly< <l

be mutually distinct support abscissas, and consider the divided differences
SI&, ---» Li+x] which belong to the function f(x) = P(x), where the polyno-
mial P is the solution of the Hermite interpolation problem #,. These
divided differences are now well defined by the recursion (2.1.3.5), if we let
fi = P({;) initially. Therefore, and by (2.1.3.5),

(2157a)  P(x)= Yafx -V, a=f[o, ly -0 L)

j=0

(2.1.5.7b) fl] = P(%),
(2.1.5.7¢c)

f[ci’ Ci+19 ey Ci+k] — f[ci+1’ Ci+2’ ceey £i+k] “f[(i, Ci+1, EEE) Ci+k—l]
Ci+k_ci ’
fori=0,1,...,n,k=1,...,n—i Since x, < x; < < X, all limits

f[xi’ Xit1s +«os xi+k] = lim. f[(i, Civtronns Ci+k]

Lj=x;
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exist provided they exist for indices i, k with x; = x;,; = *** = X; 4. The

latter follows from (2.1.4.3), which yields
. 1
(2.1.5.8) lim f[C.-, Ci+ 19 -0 Ci+k] = E Pm(xi)

i<h<Thn

X=X =" = Xjsx.

We now denote by r = r(i) = 0 the smallest index such that
X, =X, 4 =" =X;.

Then due to the interpolation properties of P with respect to %,

PO(x;) = P(x,) = f,
so that by (2.1.5.8)

k!

In the limit {; - x;, (2.1.5.7) becomes

FIxis Xiv 1o oves Xina) = X, =X01=""= Xjsx-

(2.1.5.9a) P(x) = Zoaj[[x —x;V, a;=fjxo, X1, ..., x}]
F=

(2159b)  fIxis Xiv1s-ees Xiss) =ka"—*—" if X; = X;,4

(2.1.59¢)  flxis Xiv 1 - o» Xivi)

— Slxiv 1 Xivas oo Xiod = fxis Xix 1o -0 Xivn=i]

Xivk — Xj

1)

otherwise.

(Note that xq < x; <--- < x, has been assumed.) These formulas now
permit a recursive calculation of the divided differences and thereby the

coefficients a; of the interpolating polynomial P in Newton form.

ExaMPLE 2. We illustrate the calculation of the divided differences with the data of

Example | (m=2,n, =2,n; =3):
Fo={(0. —1). (0, —2), (1,0, (1L, 10} (1, 40)}.
The following difference scheme results:
Xo=0 —1*=f[xo]
=2* = f[xo. x4]

x; =0 —1*=f[x,] 3 =f[xo, X1, X2]
1=f[xy, x] 6 =flxo, ..., x3]
x;=1 0*=f[x,] 9 = f[x,, xz, x3] 5=f[xo0, ...
10* = f[x2, x3] 11 =f[xy, ..., x4]
x3=1 0*=f[x5] 20* = f[x;, X3, x4]

10* = f[x3, x4)
xg=1 0*=f[x,]

s -"4]
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The entries marked * have been calculated using (2.1.5.9b) rather than (2.1.5.9c). The
coefficients of the Hermite interpolating polynomial can be found in the upper
diagonal of the difference scheme:

P(x)= —1—=2[x — xo] + 3[x — xo]* + 6[x — x,]® + 5[x — x,J*
= —1—2x + 3x? + 6x%(x — 1) + Sx%(x — 1)~
The interpolation error which is incurred by Hermite interpolation can
be estimated in the same fashion as for the usual interpolation by polyno-

mials. In particular, the proof of the following theorem is entirely analogous
to the proof of Theorem (2.1.4.1):

(2.1.5.10) Theorem. Let the real function f be n + 1 times differentiable on the
interval [a, b}, and consider m + 1 support abscissae &; € [a, b],

Co<& < <.
If the polynomial P(x) is of degree at most n,

Ym=n+1,
i=0

and satisfies the interpolation conditions
POE)=f®E),  k=0,1,...,m—1 i=0,1,....m,
then to every x € [a, b] there exists & € I[&,, ..., &,, X] such that

f(i)—P(i)=ﬂ2%;;+@’

where
wfx) = (x — Lo)ox — &)™ ... (x — &)™

Hermite interpolation is frequently used to approximate a given real
function f by a piecewise polynomial function ¢. Given a partition

Aa=Eo << <iu=b

of an interval [, b}, the corresponding Hermite function space HY is defined
as consisting of all functions ¢: [a, b] > R with the following properties:

(2.15.11).

(@) @ € C*"[a, b]: The (v — 1)st derivative of ¢ exists and is continuous on
[a, b].

(b) o|I; € 0,,_, : On each subinterval I,:=[&;, &, i=0,1,....m—1, ¢
agrees with a polynomial of degree at most 2v — 1.

Thus the function ¢ consists of polynomial pieces of degree 2v — 1 or less
which are v — 1 times differentiable at the “knots” ;. In order to approxi-
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mate a given real function f € C*~![q, b] by a function ¢ € HY, we choose
the component polynomials P; = ¢ |I; of ¢ so that P; € I1,,_, and so that
the Hermite interpolation conditions

P?‘)(fi) =f(h)(5i), P(ik)(fw 1) =f(k)(fi+1)» k=0,1,...,v—1,

are satisfied.

Under the more stringent condition f € C**[a, b}, Theorem (2.1.5.10) pro-
vides a bound to the interpolation error for x € I; which arises if the com-
ponent polynomial P; replaces f:

| f(x) - P.-(x)l < I(x - 512%)1_ 5i+1)lv I?:l,x lf(m(f)'
(2.1.5.12 P ,

Combining these results for i =0, 1, ..., m gives for the function ¢ € HY,
which was defined earlier,

@1513) |~ ola= max | ()~ 0] < gy 127417

x €la, b)
where

Al = max |&., — &
O<i<m-1
is the “fineness ” of the partition A.

The approximation error goes to zero with the 2v th power of the fineness
|A;| if we consider a sequence of partitions A; of the interval [a, b] with
[|A; ]| = 0. Contrast this with the case of ordinary polynomial interpolation,
where the approximation error does not necessarily go to zero as ||A; | -0
(Section 2.1.4).

Ciarlet, Schultz, and Varga (1967) were able to show that also the first v
derivatives of ¢ are good approximations to the corresponding derivatives

of f:
(2.1.5.14)

£ _E. v—k
1009 = o)) < 1S 2 2 e — e ma | )

foralxel,,k=0,1,...,v,i=0,1,...,m— 1, and therefore

(LY

2.1.5.15 b _ oW < v
( ) ”f ¢ ”ao 22v—2kk! (2v - 2k)' "f "ao

fork=0,1,..., v
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2.2 Interpolation by Rational Functions

2.2.1 General Properties of Rational Interpolation

Consider again a given set of support points (x;, f;),i=0, 1,2, .... We will
now examine the use of rational functions

P**(x) _ao+ayx+-+ax*
Q*¥(x) " bo+byx+-+bx"

for interpolating these support points. Here the integers 1 and v denote the
maximum degrees of the polynomials in the numerator and denominator,
respectively. We call the pair of integers (u, v) the degree type of the rational
interpolation problem.

The rational function ®** is determined by its u + v + 2 coefficients

@+ *(x)

]

ag,ay,...,a,,by, by, ..., b,.

On the other hand, @ determines these coefficients only up to a common
factor p # 0. This suggests that ®* " is fully determined by the p+ v + 1
interpolation conditions

(22.11) o*(x)=f;, i=0,1,...,u+w

We denote by A** the problem of calculating the rational function @**
from (2.2.1.1).

It is clearly necessary that the coefficients a,, b, of ®* " solve the hom-
ogeneous system of linear equations

(2212) PY(x) —£0"(x)=0, i=0,1,...,u+v
or written out in full,
ag+ayx; + - +a,xt —filbo + byx; + - + b,x})=0.

We denote the above system by S*°.

At first glance, substituting S** for A" does not seem to present a
problem. The next example will show, however, that this is not the case, and
that rational interpolation is inherently more complicated than polynomial
interpolation.

ExampLE. For support points

X; 01 2
fi 1 22
andu=v=1:
[/ 1) —l'bo =0,

ao+al '—2(b0+b|) =0,
aop + 201 —_ 2(b0 + 2b1) =0.
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Up to a common nonzero factor, solving the above system S ! yields the coefficients
a0=0, bo=0, a1=2, b1=1,

and therefore the rational expression
2x
ol (x)=—",
)=

which for x = 0 leads to the indeterminate expression 0/0. After canceling the factor
x, we arrive at the rational expression

ot i(x)=2.

Both expressions ®!:! and ®!- ! represent the same rational function, namely the
constant function of value 2. This function misses the first support point (xo, fo) =
(0, 1). Therefore it does not solve A" '. Since solving S'! is necessary for any
solution of A !, we conclude that no such solution exists.

The above example shows that the rational interpolation problem 4**
need not be solvable. Indeed, if $** has a solution which leads to a rational
function that does not solve A* *—as was the case in the example—then the
rational interpolation problem is not solvable. In order to examine this
situation more closely, we have to distinguish between different representa-
tions of the same rational function ®**, which arise from each other by
canceling or by introducing a common polynomial factor in numerator and
denominator. We say that two rational expressions,

. Pi(x) . Pax)
(Dl(x) = Ql(x)’ (I)Z(x) = Qz(x) ’ Ql(x) $ 0’ QZ(x) $ 0,
are equivalent, and write
®, ~,,

if
P (x)Q5(x) = P1(x)Q1(x).

This is precisely when the two rational expressions represent the same rat-
ional function.

A rational expression is called relatively prime if its numerator and deno-
minator are relatively prime, i.e., not both divisible by the same polynomial
of positive degree. If a rational expression is not relatively prime, then can-
celing all common polynomial factors leads to an equivalent rational expres-
sion which is.

Finally we say that a rational expression ®* " is a solution of $*" if its
coefficients solve S*'*. As noted before, ®** solves S* " if it solves A*".

Rational interpolation is complicated by the fact that the converse need not
hold.
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(2.2.1.3) Theorem. The homogeneous linear system of equations S** always
has nontrivial solutions. For each such solution

_ P v({c)

AC)

0"*(x) # 0 holds, i.e., all nontrivial solutions define rational expressions.

d)u, v

Proor. The homogeneous linear system S** has u + v + 1 equations for
u + v + 2 unknowns. As a homogeneous linear system with more unknowns
than equations, $* * has nontrivial solutions

(@, ay,...,a,,by,...,0)#(0,...,0,0,...,0).
For any such solution, @* *(x) % 0, since
0*(x)=by +byx+--+bx"'=0

would imply that the polynomial P**(x) = a, + a; x + -** + a, x* has the
zeros

P (x;)=0, i=0,1,...,u+v.
It would follow that P**(x)= 0, since the polynomial P*" has at most

degree yu, and vanishes at u+v+1>pu+ 1 different locations,
contradicting

(@0, ay,...,a,,bg,...,b)# (0, ..., 0). O

The following theorem shows that the rational interpolation problem has
a unique solution if it has a solution at all.

(2.2.1.4) Theorem. If @, and ®, are both (nontrivial) solutions of the homogen-
eous linear system S*:*, then they are equivalent (®, ~ ®,), that is, they deter-
mine the same rational function.

PrOOF. If both @,(x) = P,(x)/Q,(x) and ®,(x) = P,(x)/Q,(x) solve S*°,
then the polynomial

P(x):= Py (x)Q2(x) — P2(x)Q4(x)
has u + v + 1 different zeros
P(x;) = Py(x;)@2(x;) — P2(x:)Q1(x;)
= fiQ1(x:)Q2(x;) — £:Q2(x:)Q1(x;)
=0, i=0,1,...,u+v
Since the degree of polynomial P does not exceed u + v, it must vanish

identically, and it follows that ®,(x) ~ ®,(x). O

Note that the converse of the above theorem does not hold: a rational
expression @, may well solve S** whereas some equivalent rational expres-
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sion @, does not. The previously considered example furnishes a case in
point. In fact, we will see that this situation is typical for unsolvable interpo-
lation problems.

Combining Theorems (2.2.1.3) and (2.2.1.4), we find that there exists for
each rational interpolation problem A* " a unique rational function, which is
represented by any rational expression ®* " that solves the corresponding
linear system S**. Either this rational function satisfies (2.2.1.1), thereby
solving A**, or A*:" is not solvable at all. In the latter case, there must be
some support point (x;, f;) which is “ missed ” by the rational function. Such
a support point is called inaccessible. Thus A* " is solvable if there are no
inaccessible points.

Suppose ®**(x) = P**(x)/Q**(x) is a solution to S*. For any
i€{0, 1, ..., u + v} we distinguish the two cases:

(1) @*7(x) # 0,
(2) @*7(x;)=0.
In the first case, clearly, ®* ¥(x;) = f;. In the second case, however, the sup-
port point (x;, f;} may be inaccessible. Here
P*¥(x;)=0

must hold by (2.2.1.2). Therefore, both P** and Q** contain the factor
x — x; and are consequently not relatively prime. Thus:

(2:2.1.5). If S$**" has a solution ®** which is relatively prime, then there are no
inaccessible points: A" is solvable.

Given ®*°, let ®** be an equivalent rational expression which is relatively
prime. We then have the general result:

(22.1.6) Theorem. Suppose ®"* solves S**. Then A" " is solvable—and ®*-”
represents the solution—if and only if ®** solves S*:*.

PrOOF. If ®* solves $*'*, then 4" is solvable by (2.2.1.5). If &~ does not
solve S**, its corresponding rational function does not solve A" . O

Even if the linear system S$*-* has full rank p + v + 1, the rational interpola-
tion problem A** may not be solvable. However, since the solutions of S***
are, in this case, uniquely determined up to a common constant factor p # 0,
we have:

(2.2.1.7) Corollary to (2.2.1.6). If S** has full rank, then A*" is solvable if and
only if the solution @ of S*" is relatively prime.

We say that the support points (x;, f;), i =0, 1, ..., o are in special posi-
tion if they are interpolated by a rational expression of degree type (k, 1)
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with k + 1 < ¢. In other words, the interpolation problem is solvable for a
smaller combined degree of numerator and denominator than suggested by
the number of support points. We observe that

(2.2.1.8). The accessible support points of a nonsolvable interpolation problem
A"Y are in special position.

PrOOF. Let iy, ..., i, be the subscripts of the inaccessible points, and let ®**
be a solution of §**. The numerator and the denominator of ®* * were seen
above to have the common factors x — x; , ..., x — x;,, whose cancellation
leads to an equivalent rational expression ®* with k =y - a, A = v — a.
®* * solves the interpolation problem A** which just consists of the
u+ v+ 1 — aaccessible points. As

K+iA+l=p+v+1l-2a<pu+v+1-—a

the accessible points of A*'* are clearly in special position. O

The observation (2.2.1.8) makes it clear that nonsolvability of the rational
interpolation problem is a degeneracy phenomenon: solvability can be
restored by arbitrarily small perturbations of the support points. In what
follows, we will therefore restrict our attention to fully nondegenerate prob-
lems that is, problems for which no subset of the support points is in special
position. Not only is A*** solvable in this case, but so are all problems 4% * of
Kk + 4 + 1 of the original support points where x + A < u + v. For further
details see Milne (1950) and Maehly and Witzgall (1960).

Most of the following discussion will be of recursive procedures for solv-
ing rational interpolation problems A™ ". With each step of such recursions
there will be associated a rational expression " of degree type (u, v) with
1 <mandv < n,and either the numerator or the denominator of @ * will be
increased by 1. Because of the availability of this choice, the recursion
methods for rational interpolation are more varied than those for polyno-
mial interpolation. It will be helpful to plot the sequence of degree types
(4, v) which are encountered in a particular recursion as paths in a diagram:

Nlo 12 03
0

1 I—

) LI
3

We will distinguish two kinds of algorithms. The first kind is analogous to
Newton’s method of interpolation: A tableau of quantities analogous to
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divided differences is generated from which coefficients are gathered for an
interpolating rational expression. The second kind corresponds to the
Neville-Aitken approach of generating a tableau of values of intermediate
rational functions " *. These values relate to each other directly.

2.2.2 Inverse and Reciprocal Differences. Thiele’s
Continued Fraction

The algorithms to be described in this section calculate rational expressions
along the main diagonal of the (y, v)-plane:

w01 23

(2.22.1)

W N = O

Starting from the support points (x;, f;), i =0, 1, ..., we build the following
tableau of inverse differences:

i X N
0 Xo fo
1 X1 fi ‘P(XO, xl)

2 x2 fZ (p(XOa x2) ‘P(xo, xla xl)
3

X3 f_3 (P(xo., x3) @(xo, X1, X3) @(xo, X1 X2, X3)

The inverse differences are defined recursively as follows:

x,-—xj
fi=fi’

x_i—xk

(P(xi’ xj) =

2222 Xiy Xiy X )= A —,
( ) ol i» %) o(x;, xj) — o(x;, xx)

Xm — Xp

Xiyorey X1y Xy Xp) = .
o b Xm> %) O(Xiy v Xpy X)) = @(Xi5 o5 Xy, X,)
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On occasion, certain inverse differences become oo because the denomina-
tors in (2.2.2.2) vanish.

Note that the inverse differences are, in general, not symmetric functions
of their arguments.

Let P*, Q" be polynomials whose degree is bounded by u and v, respec-
tively. We will now try to use inverse differences in order to find a rational
expression

P*(x)
0"(x)

" (x) =

with

> "x;)=f; fori=0,1,...,2n
We must therefore have

P(x) _ . P'(x) _ P(xo)

o) " TR T F)
_ Y e ) DPRE k. S
ot Km0l gty = g ()

The rational expression Q"(x)/P"~ !(x) satisfies

e L

fori=1,2, ..., 2n. It follows that

o) _ A
Proip) O M pmig T pei)
0" '(x)
= @(xo, X1) + (x — x‘)F"T(;)
X — Xy

BN T 0)

and therefore

P (x)) X; — X,
G i1 QU NS - Xos X15 X;), i=273...,2n
Qn l(x) (p(xo’xi)_q’(xo,xl) (P( V] 1 )

i
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Continuing in this fashion, we arrive at the following expression for ®™ "(x):

)= P X=X
") = Gy =P gy ()
=fo+ x—xox—xl _..
#0: ) + 11
=fo+ X=X -
@(xo, x1) + !
X — X,

(p(xO’ X1 xZ) +

o(xo, Xy, X2, X3) +

X — Xp—1
@(Xg, --vr Xap)
@™ "(x) is thus represented by a continued fraction:

q)n,n(x) =f0 + X - xo;‘P(xo, xl) +Xx— xl/(p(x07 X1, x2)

(222.3) + X = X,J0(xq, X1, X3, X3) + -

+ )i__: Xan—1, ‘P(XOa Xi5enes x2n)'

It is readily seen that the partial fractions of this continued fraction are
nothing but the rational expressions @ *(x) and ®***(x), u=0,1, ...,
n — 1, which satisfy (2.2.1.1) and which are indicated in the diagram (2.2.2.1):

(I)O,O(x) =f09
OV O(x) = fu + x — Xof/@(x0, X4),
d)l‘ l(x) =f0 +x— xo/‘P(XOa xl) +Xx - x1¢¢(xo, xla x2)9

EXAMPLE

i ( X; | fi l(ﬂ(xo,xi) o(xo, X3, X;) @(xo, X1, Xz, X;)

00 0

1| 1] -1 -1

202 -3 -3 -1

313 9 3 3 b

O ' (x)=0+x/—1+x—1/— 12+ x —2[1/2 = (4x* — 9x)/(—=2x + 7).
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Because the inverse differences lack symmetry, the so-called reciprocal
differences

p(xia Xit1s --0s xi+k)

are often preferred. They are defined by the recursions

p(x:)=fi,
X — Xiyq
p(xia X; ) =—,
(2224) A
p(xi,x..'.pl,...,ka):: Xi — Xi+k

p(Xis ooy Xivk—1) — P(Xis1s oo Xi+k)
+ (X1 ooy Xiva—1)-

For a proof that the reciprocal differences are indeed symmetrical, see
Milne-Thompson (1951).
The reciprocal differences are closely related to the inverse differences.

(2.2.2.5) Theorem. For p = 1, 2, ... [letting p(x,, ..., X,_,) =0 for p = 1],
O(x0, X1, oy Xp) = p(Xo, -5 Xp) = P(X0, -0y Xp_2)-

Proor. The proposition is correct for p = 1. Assuming it true for p, we
conclude from

o Xp = Xpi1
O(x0, .oy Xp) — @(Xo, ooy Xpo 1, Xpit)

O(Xo, X1y ooy Xpyq) =

that

o Wﬂxp_xp-f»l
p(xo, DY xp)“ p(xo, RIS x,,_l, xp+1)

(p(xo, X1, ...,xp+1)=

By (2.2.2.4),

o Xp+1 = Xp
p(xo, .-y Xp) = P(Xps1s Xos-ens Xp)

p(xp+l’ an---,xp)— p(xdr'--’xp—l)=

Since the p(...) are symmetric,
@(X0, X1y oves Xpr1) = P(Xo, o5 Xpu1) — P(Xo, o0y Xp_ 1),

whence (2.2.2.5) has been established for p + 1. O
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The reciprocal differences can be arranged in the tableau

Xo Jo
ﬂ(xo’ xl)
xy | fi _P_(xo, Xy, X3)
(222.6) p(xy, x3) p(xo, Xy, X3, X3)
X2 f plxys X2, X3)
p(x2 s x3) :
x; f:3

Using (2.2.2.5) to substitute reciprocal differences for inverse differences
in (2.2.2.3) yields Thiele’s continued fraction:

D""(x) = fo + X — Xo/p(Xo, X1) + X = X;/p(x0, X1, X2) — p(Xo)

(2‘2‘2'7) + tt + X — xz,,_l p(xo, seey xZ”) - p(xo, seey xZ"_.z).

2.2.3 Algorithms of the Neville Type

We proceed to derive an algorithm for rational interpolation which is analo-
gous to Neville’s algorithm for polynomial interpolation.

A quick reminder that, after discussing possible degeneracy effects in
rational interpolation problems (Section 2.2.1), we have assumed that such
effects are absent in the problems whose solution we are discussing. Indeed,
such degeneracies are not likely to occur in numerical problems.

We use

@) = g

to denote the rational expression with

O(x)=f; fori=ss+1,....,s+u+v,

P*Y Q" being polynomials of degrees not exceeding u and v, respectively.
Let p** and ¢** be the leading coefficients of these polynomials:

PhY(x) = pt x4, 08 (x) =gt "x" + .
For brevity we put
o =x—x; and Ty (x, y):= Py ¥(x) — y@5*(x),
noting that
T (x;, ;) =0, i=s,s+1,....,s+u+wv.
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(2.2.3.1) Theorem. Starting with
P °(x) = £, > 0x) =1,
the following recursions hold:
(@) Transition (u — 1, v) — (u, v):
P (x) = 2,8 PR (R) = @RI (),
() = oqe T QL {(x) — s+u+‘qs+‘1‘ QN (x).
(b) Transition (u, v — 1) — (g, v):
PE(x) = ol P H(X) = oty DT PR (),
() = g p IO ) — g PRV QT ().
Proor. We show only (a), the proof of (b) being analogous. Suppose the
rational expressions ®* ! and ®*; ! * meet the interpolation requirements
T “Y(x;, f)=0 fori=s,....,s+pu+v—1,
T 1Y%, f)=0 fori=s+1,....,s+pu+v

If we define P% *(x), Q% *(x) by (a), then the degree of P%'* clearly does not
exceed p. The polynomial expression for Q> contains formally a term with
x**1 whose coefficient, however, vanishes. The polynomial Q¥ * is therefore
of degree at most v. Finally,

TA‘S" \'(X, y) = asqg—-l ‘T;‘-Fll ‘(X7 ))) s+u+\qs+l \Tg . \(X y)
From this and (2.2.3.2),

(2232)

T ¥(x;, f;)=0 fori=s,....,s+pu+v

Under the general hypothesis that no combination (y, v, s) has inacces-
sible points, the above result shows that (a) indeed defines the numerator
and denominator of ®**. O

Unfortunately, the recursions (2.2.3.1) still contain the coefficients p¥*~?,
g"~!*. The formulas are therefore not yet suitable for the calculation of
@7 "(x) for a prescribed value of x. However, we can eliminate these
coefficients on the basis of the following theorem.

(2.2.3.3) Theorem.

mw—1,v —1,v—1 = (X— _‘f___lfi 7_ 7s+u+‘*1)
@) @8 )= B TR T e e )
with k, = —p‘s‘ﬂ1 sTighT Ly
(b), 25 10() = B4 1) =y TSt (F )
Sri (X) s+1 (x)

. u—-1,v—1 pu—1,v
withk, = —pi 1" givi "
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ProoOF. The numerator polynomial of the rational expression

01 - @z ey = PO BT B B L

is at most of degree u — 1 + v and has u + v — 1 different zeros

X;, i=s+1,s+2,...,s+u+v-1
by definition of ®*~'-* and ®* -~ . It must therefore be of the form
Ky (X = Xgeq) oo (X = Xgppay—y) With ky = —piil>1gh= 1y
This proves (a). (b) is shown analogously. O
(2.2.3.4) Theorem. For u=>1,v>1,
DL (x) — 0 (x)

(@) @ (x)= O M(x) +

% 1__5&‘1’?_*()_ 1
Gaprv | D) — BT X)
—
*
d)u.v—l(x)_ d)u.v—l(x)
b). Yix) = O s+1 .
( ) (D‘S‘ (V) s+1 (\’)+ o, [ g+vx l(x) .v‘l(x) .
as+u+v .‘s‘+‘l—x(x) s+11 v_‘(x)_

ProoOF. By Theorem (2.2.3.1a),
sq;;—l.qu;xl.v(x) s+u+vqs+ ' qu . v(x)
sq;‘ L .‘sl;l‘.v(x)_as+;.|+vq;‘+ll " .:" b X)

We now assume that p#; ¥~ 1 = 0, and multiply numerator and denomina-
tor of the above fraction by

2 (x) =

_pg+ll v l(’(_x.s+l)( s+2) (x_xsj}Hw—l)

FHEC AR OO

Taking Theorem (2.2.3.3) into account, we arrive at

@235)  apo(g= B S BT,

where
[ =01 )—d)i‘I}’”“(X),
[ L=®"(x)— o (x)

(a) follows by a straightforward transformation. (b} is derived analogously.

a

The formulas in Theorem (2.2.3.4) can now be used to calculate the values
of rational expressions for prescribed x successively, alternately increasing
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the degrees of numerators and denominators. This corresponds to a zigzag
path in the (g, v)-diagram:

(22.36)

Special recursive rules are still needed for initial straight portions—yvertically
and horizontally—of such paths.

As long as v =0 and only u is being increased, one has a case of pure
polynomial interpolation. One uses Neville’s formulas [see (2.1.2.1))

00-°(x) =1,
u—1,0 . u—1,0
0 0() = U T BB gy

Ay — XLy py

Actually these are specializations of Theorem (2.2.3.4a) for v = 0, provided
the convention ®*, ! ~! := oo is adopted, which causes the quotient marked
* (on page 69) to vanish.

If 4 = 0 and only v is being increased, then this case relates to polynomial
interpolation with the support points (x;, 1/f;), and one can use the formulas

0-0(x) =1,

2237) ®*(x)= D Tery . ov=12...,

as <xs-i—v

R )

which arise from Theorem (2.2.3.4) if one defines @_.';*~ (x)=0.
Experience has shown that the (u, v)-sequence

0,0)> (0, 1) > (1, 1) > (1, 2) > (2, 2) > -

—indicated by the dotted line in the diagram (2.2.3.6)—holds particular
advantages, especially in the important application area of extrapolation
methods (Sections 3.4 and 3.5), where interest focuses on the values ®% *(x)
for x = 0. If we refer to this particular sequence, then it suffices to indicate
u + v, instead of both u and v, and this permits the shorter notation

T, =0(x) withi=s+pu+v,k=pu+v.
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The formulas (2.2.3.4) combine with (2.2.3.7) to yield the algorithm

TI:O :=ﬁ9 T;, -1 :=0,
lelk—l _ 7;—1,’6—1

2238) Tyu=T ;- +
( ) * o X = Xi—x I_Ti,k—n—Ti—l,k—l -1
T

ik—1 ’I;—l,k—z

for1 <k <i,i=0,1,.... Note that this recursion formula differs from the
corresponding polynomial formula (2.1.2.5) only by the expression in
brackets [...], which assumes the value 1 in the polynomial case.

If we display the values T, in the tableau below, letting i count the
ascending diagonals and k the columns, then each instance of the recursion
formula (2.2.3.8) interrelates the four corners of a rhombus:

(w,v)= (0, 0) ©1) (L1 (1,2)...
fo = Too

0= TO,—l Ty,
f1 = Tho T3,

0=T, _, Ty ————>Ty
fz =T T3_2 Dot

0= Tl,—l 13, :

fa =.T30

If one is interested in the rational function itself, i.e. its coefficients, then
the methods of Section 2.2.2, involving inverse or reciprocal differences, are
suitable. However, if one desires the value of the interpolating function for
just one single argument, then algorithms of the Neville type based on the
formulas of Theorem (2.2.3.4) and (2.2.3.8) are to be preferred. The formula
(2.2.3.8) is particularly useful in the context of extrapolation methods (see
Sections 3.4, 3.5, 7.2.3, 7.2.14).

2.2.4 Comparing Rational and Polynomial Interpolations

Interpolation, as mentioned before, is frequently used for the purpose of
approximating a given function f(x). In many such instances, interpolation
by polynomials is entirely satisfactory. The situation is different if the loca-
tion x for which one desires an approximate value of f(x) lies in the prox-
imity of a pole or some other singularity of f (x)}—like the value of tan x for x
close to n/2. In such cases, polynomial interpolation does not give satisfac-
tory results, whereas rational interpolation does, because rational functions
themselves may have poles.
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ExAMPLE [taken from Bulirsch and Rutishauser (1968)]. For the function f(x) =

cot x the values cot 1°,

cot 2°, ... have been tabulated. The problem is to determine

an approximate value for cot 2°30'.
Polynomial interpolation of order 4, using the formulas (2.1.2.4), yields the

tableau
x; fi = cot (x;)
1° 57.28996163
14.30939911
2° 28.63625328 21.47137102
23.85869499 22.36661762
3° 19.08113669 23.26186421 22.63519158
21.47137190 23.08281486
4° 14.30066626 22.18756808
18.60658719
5° 11.43005230

Rational interpolation
gives

1° | 57.28996163
2° | 2863625328
3 | 19.08113669
4 | 1430066626
5° | 1143005230

The exact value is cot 2

A similar situation

with (u, v) = (2, 2) using the formulas (2.2.3.8) in contrast

22.90760673

22.90341624
22.90201805 22.90369573
2290411487 22.90376552
2291041916 2290384141
22.90201975

22.94418151

°30' = 22.903 765 5484 .. ..; incorrect digits are underlined.

is encountered in extrapolation methods (see Sections

3.4,3.5,7.2.3, 7.2.14). Here a function T(h) of the step length h is interpolated

at small positive valu

es of h.

2.3 Trigonometric Interpolation

2.3.1 Basic Facts

Trigonometric interpolation uses combinations of the trigonometric func-

tions cos hx and sin
interpolation, that is,

(23.1.1a) ¥(x)

hx for integer h. We will confine ourselves to linear
interpolation by one of the trigonometric expressions

M

+ Y (4, cos hx + B, sin hx)
h=1

=20
2
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Ao

(23.L1b) ¥(x)=3

M-1
+ Y. (A, cos hx + B, sin hx) + % cos Mx

h=1
of, respectively, N = 2M + 1 or N = 2M support points (x;, i), k=0, ...,
N — 1. Interpolation by such expressions is suitable for data which are
periodic of known period. Indeed, the expressions W(x) in (2.3.1.1) represent
periodic functions of x with the period 2x.!

Considerable conceptual and algebraic simplifications are achieved by
using complex numbers and invoking De Moivre’s formula

€% = cos kx + i sin kx.

Here and in what follows, i denotes the imaginary unit. If c =a + ib, a, b

real, then ¢ = a — ib is its complex conjugate, a is the real part of ¢, b its

imaginary part, and |¢| = \/cc = \/ a® + b? its absolute value.

Particularly important are uniform partitions of the interval [0, 27]
x, = 2nk/N, k=0,...,N—-1

to which we now restrict our attention. For such partitions, the trigonomet-
ric interpolation problem can be transformed into the problem of finding a
phase polynomial

(23.12) p(x) = Bo + Bre™ + -+ + Py_, e Dix
with complex coefficients §; such that
p(x) = fi» k=0,...., N—1.
Indeed
e him = o= 2mibkIN _ p2mi(N-RKN _ (N —Rixe
and therefore

e}lixg + e(N—h)ix. ehix. . e(N-h)ixk

(2.3.1.3) cos hx; = 3 s sin hx;, = >

Making these substitutions in expressions (2.3.1.1) for ¥(x) and then collect-
ing the powers of ™ produces a phase polynomial p(x), (2.3.1.2), with

LIf sin u and cos » have to be both evaluated for the same argument u, then it may be
advantageous to evaluate t = tan(v/2) and to express sin u and cos  in terms of ¢:

. 2t 1-
smnmu=-—— cos u= 3"
1+t

1+¢

This procedure is numerically stable for 0 < u < n/4, and the problem can always be trans-
formed so that the argument falls into that range.
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coefficients B;,j =0, ..., N — 1 which are related to the coefficients 4,, B, of
¥(x) as follows:

(2.3.1.4)
(@) If N is odd, then N = 2M + 1 and
A . . .
&=ﬁf, B;=4A;—iB)), Bn_;=%A4;+iB), j=1,...,M;

AO=2ﬁ09 Ah=ﬂh+ﬁN—h, Bh—l( BN ,,) h=l,...,M.
(b) If N is even, then N = 2M and

A . . ,
B0=709 ﬁjz%(Aj_!Bj)’ ﬂN—j=%(Aj+lBj)s }=1,'~',M_1a

Am
2

T

ﬂM=

Ao=zﬁo, Ah=ﬁh+ﬂN—h’ Bh=i(Bh_BN-h)a h=1,...,. M -1,

The trigonometric expression ¥(x) and its corresponding phase polyno-
mial p(x) agree for all support arguments x, = 2nk/N of an equidistant
partition of the interval [0, 2x]:

S = P(x) = p(xi), k=0,1,...,.N— 1.

However, ¥(x) = p(x) need not hold at intermediate points x # x, . The two
interpolation problems are equivalent only insofar as a solution to one

problem will produce a solution to the other via the coefficient relations
(2.3.1.4).

The phase polynomials p(x) in (2.3.1.2) are structurally simpler than the
trigonometric expressions ¥(x) in (2.3.1.1). Upon abbreviating

a):.?.eix
Wy = e,
P(w)=PBo + B + - + By_y0" 1,

and since w; # w; for j # k, 0 < j, k < N — 1, it becomes clear that we are
faced with just a standard polynomial interpolation problem in disguise:
find the (complex) algebraic polynomial P of degree less than N with

Plw)=f, k=0,..,N—1

The uniqueness of polynomial interpolation immediately gives the following
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(2.3.1.5) Theorem. For any support points (x;, fi), k=0, ..., N — 1, with f,
complex and x, = 2nk/N, there exists a unique phase polynomial

p(x)=Bo + B + -+ + Py_ N Vix
with
p(xe) = fi
fork=0,1,...,N—1.

The coefficients f; of the interpolating phase polynomial can be expressed
in closed form. To this end, we note that, for 0 <j, A< N -1

(23.1.6) wj=0* and o=

More importantly, however, we have for 0 <j, h < N — 1
N1 N forj=h

2.3.1.7 wiw = L

( ) ,‘;, K 0 forj+h

PROOF. ;_), is a root of the polynomial

N-1
o' —1=(-1)Y o
=0

from which either w;_, = 1, and therefore j = h, or

N-1 N-1

N-1
T olot= Y o= ¥ o, =0 0
k=0 k=0

k=0

Introducing the N-vectors

W(h)=(1yw’iy'“yw’;4—l)ra h=0)"”N_1’

we see that the sums in (2.3.1.7) are the complex scalar products of the
vectors w and w®:

N—-1
(23.1.8) Y owlwgt=wdTw® = [wd, wh).

k=0
This definition of the scalar product of two complex vectors is standard;
it implies that [w,w]=YN_d |[w,|* >0 for each complex vector w.
Thus the vectors w® are seen to form an orthogonal basis of the complex
space C". Note that the vectors are of length /[w™, w®] = /N instead of
length 1, however.

From the orthogonality of the vectors w® follows:

(2.3.1.9) Theorem. The phase polynomial p(x) = Y'Y= B; /™ satisfies
px)=f, k=0,1,...,N—1,
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for f, complex and x, = 2nk/N, if and only if
1 N-1 . 1 N-1 .
Bi=< Y fioii=—= Y% fre TN i=0,1,...,N— L
N =6 N =%

PROOF. With the vector notation f= (fy, f1, .-., fu-1)"s
1 N-1

.1 . 1 .
N 2 ST = LW = S [Bow® + - By w0 W] = By, D)
k=0

For phase polynomials g(x) of degree at most s, s < N — 1 given, it is in
general not possible to make all residuals '

T — q(x), k=0,...,.N—1,

vanish, as they would for the interpolating phase polynomial. In this context,
the s-segments

ps(x) = ﬁO + ﬁl eix ++ Bseﬂ'x
of the interpolating polynomial p(x) have an interesting best-approximation

property:

(2.3.1.10) Theorem. The s-segment py(x), 0 < s < N, of the interpolating phase
polynomial p(x) minimizes the sum

s@="S | - atx)

k=0

[note that S(p) = O] of the squared absolute values of the residuals over all
phase polynomials

a(x) =7y0 +y1€% + - 4y

The phase polynomial py(x) is uniquely determined by this minimum property.

Proor. We introduce the vectors

pe = (Pu(Xo), s Plen-1))"s @ =(alxo). .-, qlxn-1))"
and use the scalar product (2.3.1.8) to write
S@)=[f-a./-al
By Theorem (2.3.1.9), 8;= (1/N)[f, w?] for j=0,..., N— 1. Forj<s,
1 1 S
N[f_ Ds» w(ﬁ] = ﬁ [f- bgoﬁhw(h)’ w(j)] = Bj - Bj = 0,

and

= pona= )= Z 1o (= 2] =0
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But then we have
S@)=[f-af-4d]
=[f-p+p.—af—p:+p—4dl
=[f~ps,f=p)+[p.—a P, — 4]
2[f-p..f—pl
= S(p,)-

Equality holds only if [p, — g, p, — g] = 0, i.e,, if the vectors p, and g are
equal. Then the phase polynomials p(x) and g(x) are identical by the
uniqueness theorem (2.3.1.5). O

Returning to the original trigonometric expressions (2.3.1.1), we note that
Theorems (2.3.1.5) and (2.3.1.9) translate into the following:

(2.3.1.11) Theorem. The trigonometric expressions

Y(x) = —23 Z (4y, cos hx + B, sin hx)
r=0

Ao M-t . AM
¥(x) = > + ;.Zo (4, cos hx + B, sin hx) + . cos Mx,

where N = 2M + 1 and N = 2M, respectively, satisfy

¥Y(x)=fi, k=0,1,..., N—1,
for x, = 2nk/N if and only if the coefficients of ¥(x) are given by

2 Nt 2 Nt 2nhk
A,,=Nk§0fkcoshxk—— Z fi cos N
! 2mhk

2 N-1 N-
B,,=ﬁ2f,‘smhxk Zﬁ B
k=0
PRrOOF. Only the expressions for 4, , B, remain to be verified. For by (2.3.1.4)

1 N-1 . .
Ay =B+ Bn-» =ﬁ z file hixk 4 o= (N p.),x,‘)’
k=0

. i V-1 " o
Bh = l(ﬁh - BN—h) = N Z .fk(e hixg e (N h)lxg),
k=0
and the substitutions (2.3.1.3) yield the desired expressions. O

Note that if the support ordinates f; are real, then so are the coefficients
A,, B, in (2.3.1.11).



78 2 Interpolation

2.3.2 Fast Fourier Transforms

The interpolation of equidistant support points (x,, fi), X, = 2nk/N, k = 0,
..., N — 1, by a phase polynomial p(x) = Y Y-' B;¢/"* leads to expressions of
the form [Theorem (2.3.1.9)]

1 N-1

(232.1) Bi=~ kzo fee KN i N-—1.

The evaluation of such expressions is of prime importance in Fourier
analysis. The expressions occur also as discrete approximations—for N
equidistant arguments s—to the Fourier transform

+ o

His)={  f)e = d,

which pervades many areas of applied mathematics. However, the numerical
evaluation of expressions (2.3.2.1) had long appeared to require on the order
of N? multiplications, putting it out of reach for even high-speed electronic
computers for those large values of N necessary for a sufficiently accurate
discrete representation of the above integrals. The discovery [Cooley and
Tukey (1965)] of a method for rapidly evaluating (on the order of N log N
multiplications) all expressions (2.3.2.1) for large special values of N has
therefore opened up vast new areas of applications. This method and its
variations are called fast Fourier transforms. For a detailed treatment see
Brigham (1974) and Bloomfield (1976).

There are two main approaches, the original Cooley-Tukey method and
one described by Gentleman and Sande (1966), commonly called the Sande-
Tukey method. Both approaches rely on an integer factorization of N and
decompose the problem accordingly into subproblems of lower degree.
These decompositions are then carried out recursively. This works best
when

N =2" n > 0 integer.

We restrict our presentation to this most important and most straightfor-
ward case, although analogous techniques will clearly work for the more
general case N = N, N, ... N,, N,, integer.

The Cooley-Tukey approach is best understood in terms of the interpola-
tion problem described in the previous section (2.3.1). Suppose N = 2M and
consider the two interpolating phase polynomials g(x) and r(x) with

q(XZh) = fa, r(x2h) = fon+1s h=0,...,.M -1

The phase polynomial g(x) interpolates all support points of even index,
whereas the phase polynomial #(x)= r(x — 2n/N) = r(x — n/M) interpo-
lates all those of odd index. Since

Mixy _ 20MEN _ ik _ |+1, keven,

¢ “1=1, k odd,
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the complete interpolating phase polynomial p(x) is now readily expressed
in terms of the two lower-degree phase polynomials g(x) and r(x):

1+ Mix 1-— Mix
2322)  px)= q(x)( 2" ) +r(x — n/M)( ; )
This suggests the following n step recursive scheme. For m < n, let

M=2""1 and R=2"""

Step m then consists of determining R phase polynomials
P = B + BT + o 4 By €MV r=0,. R,
from 2R phase polynomials p™~(x),r =0, ..., 2R — 1, using the recursion
(2.322):
2p(x) = pm = D(x)(1 + ™) + pr P (x — n/M)(1 — eMix).

This relation gives rise to the following recursive relationship between the
coefficients of the above phase polynomials:

0323 BT =BTUHARNm| r=0. R,
2By = B0 — BNy IO M=,
where

e = 22T m=0,...,n

The recursion is initiated by putting
By =fi, k=0,..,N—1,
and terminates with

Bj:= (;l]), j=0,...,N_1.

This recursion typifies the Cooley-Tukey method.

The Sande-Tukey approach chooses a clever sequence of additions in the
sums Y 20 fe . Again with M = N/2, we assign to each term f, e/ an
opposite term f, . e /™+¥_Summing respective opposite terms in (2.3.2.1)
produces N sums of M = N/2 terms each. Splitting those N sums into two
sets, one for even indices j = 2h and one for odd indices j = 2h + 1, will lead
to two problems of evaluating expressions of the form (2.3.2.1), each prob-
lem being of reduced degree M = N/2.

Using the abbreviation

—_— i m
Em =€ 2mif2

again, we can write the expressions (2.3.2.1) in the form
1 N-1

ﬁj_ﬁ Y fef,  j=0,..,N-1
k=0
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Here n is such that N = 2". Distinguishing between even and odd values of j
and combining opposite terms gives

1N1

M-1 M-1
Bu=g T A=y T bt henkli =y T it

1 - 1 M-1 1 M-1
Ban+1 =7 Z ﬁc8$|2h+l)k Z ((fi — f;<+M)€:)8:k—1 = Z Sien

N k=0 N k=

forh=0...,M—1andM==N/2,smcea,f—z-:,l L &M = —1. Here
f;( =fu +ferm
k=0,...,M—1.
k= (fe = fer mlen

In order to iterate this process form =n, n — 0, welet M :=2m"1

R :=2""™ and introduce the notation
m  r=0,..,R—-1, k=0,...,2M — 1,

with f§)=f,,k=0,..., N — 1. f& Y and f{," ¥ represent the quantities f}
and f, respectively, which were introduced above. In general we have, with
M= 2""1 and R=2"""

12M1

(2324) Brer=1 Z fmek  p=0,..,R—1, j=0,...,2M — 1,

with the quantities /' satisfying the recursions:

‘m=n,...,1,

m=1) — fm | f(m) ]
(2.3.2.5) Sam = 1R M r=0,..,R—1,

(m—1) (m) __ £(m)
fAre= (% ™ m)en
‘ k=0,..,M—1.

PrOOF. Suppose (2.3.24) is correct for some m<n, and Ilet
=M/2=2""% R+=2R=2"""*1 For j=2h and j = 2h + 1, respec-
tively, we find by combining opposite terms
1 2M'—1

1 Mo .
Bir+r = ﬂ}'R‘rr = ﬁ Z (f:ml)( (rml)(+M)9y’: z f(m 1)5." 15

f"."i — [ m)En

ﬂhR’+r+R = BjR+r =

2|~ 2|~
n[\/]“ OM.

ko __ 1) hk
(m)_ 5',"1)(+M)8fn3::|—1—ﬁ Z ﬂk ;(Gm 1
k=0

where r=0,...,R—1,j=0,...,2M — 1, O
The recursion (2.3.2.5) typefies the Sande-Tukey method. It is initiated by
putting

w=fi, k=0,..,N-—1,
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and terminates with
1
Bo=xf®  r=0.. N-L

Returning to the Cooley-Tukey method for a more detailed algorithmic
formulation, we are faced with the problem of arranging the quantities ¢
in an array:

Blx1=8", k=0,..,N—-1L

Among suitable maps k= k(m,r,j), the following is the most
straightforward:

K=2"+}j, m=0,..,n r=0..2""-1 j=0,...,2" - L

It has the advantage, that the final results are automatically in the correct
order. However, two arrays B[ ], B[ ] are necessary to accommodate the
left- and right-hand sides of the recursion (2.3.2.3).

We can make do with only one array f[ ] if we execute the transforma-
tions “in place,” that is, if we let each pair of quantities B, B, ; occupy
the same positions in B[ ] as the pair of quantities A~ Y, piF', "}, from which
the former are computed. In this case, however, the entries in the array B[ ]
are being permuted, and the maps which assign the positions in B[ ] as a
function of the integers m, r, j become more complicated. Let

= 1(m, r, j)

be a map with the above mentioned replacement properties, namely
Blz] = B with

$m=1,...,n,

(2326) ") =tm=1rn)) )| r=0,...,2""_1,
tmrj+ 2" ) =1m—1,r+2"""j)| ‘j=",...,2"'“—1,

and

(2.3.2.7) t(n, 0, j)=j, j=0,...,N—1

The last condition means that the final result f; will be found in position j in

the array B[ 1: 8;= BLjil .
The conditions (2.3.2.6) and (2.3.2.7) define the map  recursively. It
remains to determine it explicitly. To this end, let

t=og+a; 24+ +a,_, 2" a,=0,1 forp=0,...,n—1,
be a binary representation of an integer ¢, 0 < t < 2". Then putting
(2.3.2.8) pt) =0y + oy 2+ +ag-2"""

defines a permutation of the integers t = 0, ..., 2" — 1 called bit reversal. The
bit-reversal permutation is symmetric, i.e. p(p(t)) = t.
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With the help of the bit-reversal permutation p, we can express t(m, r, j)
explicitly:

(2329) (m, r,j)=p(r)+],
m=0,...,n, r=0,...,2"""—-1, j=0,...,2" -1

Proor. If again

t=op+ a2+ Fa,_, 2" L, a,=0,1 forp=0,...,n—1,
then by (2.3.2.6) and (2.3.2.7)
g [B=L0Y e, =0

len — 1, 1, t —2""1) ifo,_, = 1.
Thus
=10, t)=1t(n—1,0,_y, 00+ "+ 0y_5 2" ?),
and, more generally,
=1n, 0, t)=1tm a,_; +  +a 2" Lag+ ;2"
form=0,...,n—1LForr=a,_,+ - +a, 2""™ ! we find
p(r)=op 2"+ -+ a,_, 2"
and t = p(r) +j. O

By the symmetry of bit reversal,

t(m, p(F), j) =7+,

where 7 is a multiple of 2™, 0 <7 < 2", and 0 <j < 2™ Observe that if
0<j<2™ ! then

-~

= 1t(m, p(F), j) = t(m — 1, p(¥), j) =7+,
t=1(m p(F),j+2" )=1m -1, p(F)+ 2" j)=F+j+2""!

mark a pair of positions in B[ ] which contain quantities connected by the
Cooley-Tukey recursions (2.3.2.3).

In the following pseudo-ALGOL formulation of the classical Cooley-
Tukey method, we assume that the array [ ] is initialized by putting

Blok)]=f,, k=0,...,N—1,

where p is the bit-reversal permutation (2.3.2.8). This “scrambling” of the
initial values can also be carried out “in place,” because the bit-reversal
permutation is symmetric and consists, therefore, of a sequence of pairwise
interchanges or “transpositions.” In addition, we have deleted the factor 2
which is carried along in the formulas (2.3.2.3), so that finally

ﬂj==%73[j], j=0,...,N—1.
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The algorithm then takes the form

for m =1 stepl until n do
begin for j =0 step 1 until 2" "' — 1 do
begin e = &,;
for 7 =0 step 2™ until 2" — 1 do
begin u :=pB[F + j]; v=PB[F +j + 2" '] x e;
BlF +j]l=u+uv; Br+j+2" =u—v
end
end
end;

If the Sande-Tukey recursions (2.3.2.5) are used, there is again no prob-
lem if two arrays of length N are available for new and old values, respec-
tively. However, if the recursions are to be carried out “in place” in a single
array f[ ], then we must again map index triples m, r, j into single indices t.
This index map has to satisfy the relations

tm—1,r, k)= t(m, r, k),
tm—1,r+2""k)=tmr, k+2""1)

form=nn-1,...,1,r=01..2""—-1,k=0,1,...,2" ! —1.If we
assume

(n,0,k)=k fork=0,...,N—1,

that is, if we start out with the natural order, then these conditions are
precisely the conditions (2.3.2.6) and (2.3.2.7) written in reverse. Thus
7=1(m, r, k) is identical to the index map 7 considered for the Cooley-
Tukey method.

In the following pseudo-ALGOL formulation of the Sande-Tukey method,
we assume that the array f[ ] has been initialized directly with the values f, :

JIkl=fin k=0,1,...,N—1.

However, the final results have to be “ unscrambled ” using bit reversal,

By= L TGN j=0....N~1:

for m:=n step —1 until 1 do
begin for k :=0 step 1 until 2"~ ' — 1 do
begin ¢ := & ;
for 7 := 0 step 2™ until 2" — 1 do
begin u:=f[r + k}; v:=f[F + k + 2™ '];
Flr+kl=u+uv; flr+k+2" =(u—v)xe
end
end
end;
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If all values f;, k=0, ..., N — 1 are real and N = 2M is even, then the
problem of evaluating the expressions (2.3.2.1) can be reduced in size by
putting

gh=f2h+if2h+13 h=0’-'~’M_1’

and evaluating the expressions

1 M-1
Y= de‘“”"/“ j=0,..., M —1.

The desired values f;,j=0,..., N — 1, can be expressed in terms of the
values y;, j=0, ..., M — 1. Indeed, one has with yy =y,

1 ] 1 3 —2mij/N .
(23.2.10) Bi=3 05+ Tu-) + 35 05 = Iu-de ., j=0,..,M,
ﬂN—f=Bj’ j=1,-..,M—1_
Proor. It is readily verified that

1 - 1M — 2mij2h/N
Z(Yj + )’M—j)= = Z Sfane )

1 1 M-1
Z; ('}’ 'YM 1) Z f2h+ e—21u](2h+ 1)/N+21n_,/N D
h=

In many cases, particularly if all values f, are real, one is actually in-
terested in the expressions

2"’l 2nk 2”l
N Zhco = N Zhsin

which occur, for instance, in Theorem (2.3.1.11). The values 4;, B; are con-
nected with the corresponding values for f; via the relations (2.3.1.4).

21tjk

2.3.3 The Algorithms of Goertzel and Reinsch

The problem of evaluating phase polynomials p(x) from (2.3.1.2) or trigo-
nometricexpressions ¥(x) from (2.3.1.1) for some arbitrary argument x = £ is
called Fourier synthesis. For phase polynomials, there are Horner-type eval-
uation schemes, as there are for expressions (2.3.1.1a) when written in the
form W(x) =YL _u Bje’™. The numerical behavior of such evaluation
schemes, however, should be examined carefully.

For example, Goertzel (1958) proposed an algorithm for a problem
closely related to Fourier synthesis, namely, for simultaneously evaluating

the two sums
N-1 N-1

Y wecoské, Yy sin k&
k=0 k=1
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for a given argument ¢ and given values y,,k =0, ..., N — 1. This algorithm
is not numerically stable unless it is suitably modified. The algorithm is
based on the following:

(2.3.3.1) Theorem. For £ # rn, r =0, +1, +2, ..., define the quantities
N-1

Zyksm(k j+1E  j=0,1,...,N—-1,

i sin &
Uy=Uy,,:=0.

These quantities satisfy the recursions

(2331a) U;=y+2Ujs,co8¢é—-Ujy,, j=N—-1,N-2,...,0

In particular

N-1

(2.3.3.1b) Y yi sin k& = U, sin ¢,
k=1

N-1

(23.3.1¢) Y wicos ké =y, + U, cos &£ — U,.
k=0

ProOF. For 0 <j < N — 1, let
A=yj+2U;s cos & — Uj,,.
By the definition of U, 4, Uj, ,,

N-1 N-1

A=y + 2(cos &) Y wsink—j)— Y yesin(k—j—1)¢

k=j+1 k=j+2
N-1

=y;+ GnE’ k=§:+1y,([2 cos & sin(k — j)¢ — sin(k — j — 1)¢].
Now
2 cos ¢ sin(k — j)¢ = sin(k — j + 1)¢ + sin(k — j — 1)&.
Hence
1 N-1
A= sné yjsin & + k=§'+1yk sin(k —j + 1)¢

This proves (2.3.3.1a). (2.3.3.1b) restates the definition of U,. To verify
(2.3.3.1c), note that

N-1
Z yi sin(k — 1) = -~ Yy sin(k — 1),

2= smf k=2 Slﬂf k=1

and

sin(k — 1)¢ = cos & sin k& — sin & cos k¢. O
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Goertzel’s algorithm applies the recursions (2.3.3.1) directly:

U[N]:=U[N + 1}:=0; ¢ =cos(¢); cc:=2 x c;
for j:=N — 1 step —1 until 1 do

UL =01 + cc x U[j + 1] — U[j + 2
s1:=y[0] + ¢ x U[1] — U[2];
s2:=U[1] x sin(¢);

to find the desired results s1 = Y 7=/ y, cos k&, s2 = Y22} y, sin k&,

This algorithm is unfortunately not numerically stable for small absolute
values of ¢, |¢| < 1. Indeed, having calculated ¢ = cos &, the quantity
st = Y324 y, cos k& will depend solely on ¢ and the values y, . We can write
sl = o(c, yo, ..., Yn-1), where

N-1

o(c, Yo, ..., ¥n—1)= 3. W cos k(arccos c).
k=0

As in Section 1.2, we denote by eps the machine precision. The roundoff
error Ac = ¢, |e.| < eps, which occurs during the calculation of ¢, causes
an absolute error A sl in s1, which in first-order approximation amounts to

6(pA —&2056 Zky,‘ sin k¢

1=
Acs oc siné¢ <,

N-1
= gcot &) Y ky, sin k¢.
k=0

An error A¢ = ¢ &, |e| < eps in &, on the other hand, causes only the error
N-1

A .
Assl =6_£\k;0y" cos k&) - A&

N-1

= —¢g& Y ky, sin k&
k=0

in s1. Now cot & =~ 1/¢ for small | ¢|. The influence of the roundoff error in ¢
is consequently an order of magnitude more serious than that of a corre-
sponding error in £. In other words, the algorithm is not numerically stable.

In order to overcome these numerical difficulties, Reinsch has modified
Goertzel's algorithm [see Bulirsch and Stoer (1968)]. He distinguishes the
two cases cos £ > 0 and cos & < 0.

Case (a): cos £ > 0. The recursion (2.3.3.1a) yields for the difference
oU;=U; = Ujsy
the relation
oU;=U;—Uj,1=y;+Q2cosE=2)Uj,y + Ujyy — Ujy,y
=yj+ AU + 06U,
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where
A=2(cos &£ — 1) = —4sin?(&/2).
This suggests the algorithm

A= —45sin*(¢/2);

U[N + 1]:==6U[N]=0;

forj:=N — 1 step — 1 until 0 do

begin U[j + 1]=080U[j + 1] + U[j + 2];
SU[j]=4 x U[j + 1] + 6U[j + 1] + y[j]

end;

s1:=8U[0] — 4/2 x U[1];

s2:= U[1] x sin(¢);

This algorithm is well behaved as far as the propagation of the error
AL =¢;A, |&;| <epsin Ais concerned. The latter causes only the following
error A; sl in sl:

os1 dsl [0A
AASI =§I A}» = 51}\. ° f a_é
sin?(£/2) N-1

~%45in(2)2) cos(¢/2) ',;oky i sin kg

1

E\Ne
—el(tan 5) Y ky, sin ké.

k=0

and tan(¢/2) is small for small |¢]. Besides, |tan(£/2)| < 1 for cos & > 0.
Case (b): cos ¢ < 0. Here we put
8U;=U;+ U,,,
and find
6UJ= Ul + Uj+1 =Yj + (2 cos 6 + 2)UJ+1 - Uj+1 - Uj+2
=y +AUj4; —0Uj4y,
where now
A:=2(cos & + 1) = 4 cos?({/2).
This leads to the following algorithm:
A =4 cos?(¢/2);
U[N + 1]=6U[N]=0;
for j:=N — 1 step —1 until O do
begin U[j + 1]:==6U[j + 1] - U[j + 2];
OU[j]:==4 x U[j + 1] — 6U[j + 1] + y[J]
end;
s1:=38U[0] — U[1] x 4/2;
s2:= U[1] x sin(¢);
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It is readily confirmed that a roundoff error AA=¢;4, |¢;| <eps, in 1
causes an error of at most
N-1

A;sl = el(cot g) ky, sin k¢
0

k=
in s1, and |cot(£/2)| <1 for cos ¢ < 0. The algorithm is therefore well
behaved as far as the propagation of the error A4 is concerned.

2.3.4 The Calculation of Fourier Coeflicients.
Attenuation Factors

Let # be the set of all absolutely continuous? real functions f: R — R which
are periodic with period 2z. It is well known [see for instance Achieser
(1956)] that every function f' € & can be expanded into a Fourier series

[« o]

(23.4.1) fx)= Y ¢e™,

j==w

which converges towards f'(x) for every x € R. The coefficients c; = c;(f) of
this series are given by
1 2r

(2.342) ¢;=c(f) ==2—j flx)e i=dx, j=0, +1, +2,....
o

In practice, frequently all one knows of a function f are its values f; :=f(x,)
at equidistant arguments x, :=2znk/N, where N is a given fixed positive
integer. The problem then is to find, under these circumstances, reasonable
approximate values for the Fourier coefficients c;(f). We will show how the
methods of trigonometric interpolation can be applied to this problem.

By Theorem (2.3.1.9), the coefficients f; of the interpolating phase
polynomial

p(x)=Bo + Bre* + -+ + By, NI,
with

p(xi) = fi

2 A real function f: [a, b] > R is absolutely continuous on the interval [a, b] if for every ¢ > 0
there exists 6 > 0 such that ¥, | f(b;) — f(a;)| < ¢ for every finite set of intervals [a;, b;] with
a<a;<b <--<a,<b,<band Y, |b;,— a;]| <. If the function fis differentiable every-
where on the closed interval [a, b] or, more generally, if it satisfies a “Lipschitz condition”
| f{x,) = f(x2)] <8|x, — x,| on [a, b], then f is absolutely continuous, but not conversely:
there are absolutely continuous functions with unbounded derivatives. If the function is abso-
lutely continuous, then it is continuous and its derivative f’ exists almost everywhere.
Moreover, f(x) = f(a) + [ f*(t) dt for x € [a, b]. The absolute continuity of the functions f, g

in an integral of the form {5 f(t)g’(t) dt also ensures that integration by parts can be carried out
safely.
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fork=0, +1, +2, ..., are given by

lNl

Zfe jm o i=0,1,...,N— L

Since f, = fy, the quantities f; can be thought of as a “trapezoidal sum”
[compare (3.1.7)]

B; = N f° +fie I 4 4 fy e TN 4 % e Jixn

approximating the integral (2.3.4.2), so that one might think of using the
sums

(23.43) B{f) =B, :% kgo fremTin

for all integers j=0, +1, +2,... as approximate values to the desired
Fourier coefficients c;(f). This approach appears attractive, since fast Four-
ier transforms can be utilized to calculate the quantities f;(f) efficiently.
However, for large indices j the value B;(f) is a very poor approximation to
¢;(f)- Indeed, B;,,x = B; holds for all integers k, j, while on the other hand
lim; ., ¢; = 0. [This follows immediately from the convergence of the Four-
ier series (2.3.4.1) for the argument x = 0.] A closer look also reveals that the

asymptotic behavior of the Fourier coefficients c;( f) depends on the degree
of differentiability of f

(2.3.4.4) Theorem. If the 2n-periodic function f has an absolutely continuous
r th derivative f©, then
1
ol = 0{ =)

PROOF. Successive integration by parts yields
1 = —jix
cj=2—f f(x)e™ 7™ dx

=5 j " (x)e~5* dx

1 27! r - Jix
= ey ly 10K

1 e
= -fﬂ(ji)’+l J;) e’ df(f)(x)‘

in view of the periodicity of f. This proves the proposition. O
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To approximate the Fourier coefficients c( f) by values which display the
right asymptotic behavior, the following approach suggests itself: Determine
for given values f,, k=0, +1, +2, ..., as simple a function g € # as pos-
sible which approximates fin some sense (e.g., interpolates f for x, ) and share
with f some degree of differentiability. The Fourier coefficients c;(g) of g are
then chosen to approximate the Fourier coefficients c;( f) of the given func-
tion f. In pursuing this idea, it comes as a pleasant surprise that even for
quite general methods of approximating the function f by a suitable function
g, the Fourier coefficients c;(g) of g can be calculated in a straightforward
manner from the coefficients B;(f) in (2.3.4.3). More precisely, there are
so-called attenuation factors 7;, j integer, which depend only on the choice of
the approximation method and not on the particular function values f;,
k=0, +1, ..., and for which

cle)=1;BAf), =0, %1,....

To clarify what we mean by an “approximation method,” we consider—
besides the set & of all absolutely continuous 2z-periodic functions f: R —
R—the set

F={(fikez| i€ R fisn=fi forallk e Z},
Z = {k|k integer},
of all N-periodic sequences of real numbers

f= (""f—l’fo’fb )

For convenience, we denote by f both the function f € & and its the corre-

sponding sequence (fi )z With f; = f(x,). The meaning of f will follow from
the context.

Any method of approximation assigns to each sequence f € F a function
g = P(f) in & it can therefore be described by a map

P.F-> %.
& and F are real vector spaces with the addition of elements and the multi-
plication by scalars defined in the usual straightforward fashion. It therefore

makes sense to distinguish linear approximation methods P. The vector
space [ is of finite dimension N, a basis being formed by the sequences

(2.3.4.5) M= ("), k=01,...,N-1,
where

1 ifk=jmod N,

0 otherwise.

(k) ;=
J

In both F and & we now introduce translation operators E: F — F and
E: F — #, respectively, by

(Ef k=f-y forallkeZ iffek,
(Eg)(x)=g(x —h) forallxe R ifge#, h=2n/N=x,.
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(For convenience, we use the same symbol for both kinds of translation
operators.) We call an approximation method P: F —» # translation invar-
iant if

P(E(f)) = E(P(f))

for all fe F, that is, a “shifted” sequence is approximated by a “shifted ”
function. P(E(f)) = E(P(f)) yields P(E*(f)) = E¥(P(f)), where E> = E - E,
E*=E < E - E, etc. We can now prove the following theorem by Gautschi
and Reinsch [for further details see W. Gautschi (1972)):

(2.3.4.6) Theorem. For each approximation method P: F - F there exist
attenuation factors 1;, j € Z, for which

(23.4.7) ci(Pf)=1;B{(f) foralljeZ and arbitrary fe F

if and only if the approximation method P is linear and translation invariant.

Proor. Suppose that P is linear and translation invariant. Every f € F can be
expressed in terms of the basis (2.3.4.5):

N-1 N-1
=Y fie® =Y fE,
k=0 k=0

Therefore

N-1

g:= Pf z f EX Pe(O)
by the linearity and the translation invariance of P. Equivalently,
N-1
g(x) = kzoﬁno(x — X,

where n, = Pe(? is the function which approximates the sequence ¢/®). The
periodicity of g yields

N 1
AN =)= T 2 [ nela — xei e
N-1 2=
=2 2},;‘:6’ ""‘fo Mo(x)e™ ™ dx
= 1;8;(f),
where
(2.3438) ;= Nc;(no)-

We have thus found expressions for the attenuation factors r; which depend
only on the approximation method P and the number N of given function
values f; for arguments x;, 0 < x,, < 2x. This proves the “ if ” direction of the
theorem.
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Suppose now that (2.3.4.7) holds for arbitrary f € F. Since all functions in
F can be represented by their Fourier series, and in particular Pfe %,
(2.3.4.7) implies

a0 a0

(2349) (BN = Y cPe= T BN

j=-—w j=—wo
By the definition (2.3.4.3) of B,(f), B, is a linear operator on # and, in
addition,

1 N-1

BJ(Ef) - N kgoﬁ‘_le—jixt

1N
=_e—.ﬂ e—_nxg
N LA
= ¢ ().

Thus (2.3.4.9) yields the linearity and the translation invariance of P:

a0

PEME)= Y 78" = (Pf)x —h) = (E(P(/))x). O

j=-o

As a by-product of the above proof, we obtained an explicit formula
(2.3.4.8) for the attenuation factors. An alternative way of determining the
attenuation factors t; for a given approximation method P is to evaluate the
formula

_¢(Pf)
(23.4.10) v=55

for a suitable fe F.

ExaMpLE 1. For a given sequence f € F, let g == Pf be the piecewise linear interpola-
tion of f, that is, g is continuous and linear on each subinterval [x;, x4+4), and
satisfies g(x;) = fi for k =0, 1, .... This function g = Pf is clearly absolutely con-
tinuous and has period 2x. It is also clear that the approximation method P is linear
and translation invariant. Hence Theorem (2.3.4.6) ensures the existence of attenua-

tion factors. In order to calculate them, we note that for the special sequence f = &'”
of (2.3.4.5)

1
1= L x| i jx—xw| <k k=0, 1
- = — XkN — ARN| X 14 =U, L ...
Pf(x) h
0 otherwise,

ci(Pf)= %t fohPf(x)e—f‘* dx = % f_h,.(l - %)e—iix dx.
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Utilizing the symmetry properties of the above integrand, we find

ci(Pf)= %J-:(l - %) cos jx dx

.2 gn2(
_jznhsm (2 .

With h = 2n/N, the formula (2.3.4.10) gives

N . mj\? )
1= (;jsm ﬁ) s j=0, £1,....

ExAMPLE 2. Let g := Pf be the periodic cubic spline function (see Section 2.4) with

g(xx)=/fi, k=0, £1,.... Again, P is linear and translation invariant. Using the
same technique as in the previous example, we find the following attenuation factors:
;= El,n_z ‘¥3# where z:=_n_j
77\ z ) 1+2c0s? 2’ N’

2.4 Interpolation by Spline Functions

Spline functions yield smooth interpolating curves which are less likely to
exhibit the large oscillations characteristic of high-degree polynomials. They
are finding applications in graphics and, increasingly, in numerical methods.
For instance, spline functions may be used as trial functions in connection
with the Rayleigh-Ritz—Galerkin method for solving boundary-value prob-
lems of ordinary and partial differential equations. Introductions are for
instance Greville (1969), Schultz (1973), Bohmer (1974), and de Boor (1978).

24.1 Theoretical Foundations

Let A:=={a = x, < x; < '** < x, = b} be a partition of the interval [a, b].
(2.4.1.1) Definition. A cubic spline (function) Sy, on A is a real function
Sa: [a, b] > R with the properties:

(@) Sa € C*a,b), that is, S, is twice continuously differentiable on [a, b].
(b) Sa coincides on every subinterval [x;, x;44), i=0,1,...,n—1, with a
polynomial of degree three.

Thus a cubic spline consists of cubic polynomials pieced together in such a
fashion that their values and those of their first two derivatives coincide at
the knots x;,i=1,...,n— 1.
Consider a set Y :={y,, y;, ..., Ya} Of n + 1 real numbers. We denote by
Sa(Y; )
an interpolating spline function S, with S,(Y; x;)=y; fori=0,1,...,n.
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Such an interpolating spline function S,(Y; - ) is not uniquely determined
by the set Y of support ordinates. Roughly speaking, there are still two
degrees of freedom left, calling for suitable additional requirements. The
following three additional requirements are most commonly considered:

(24.1.2)

(a) Sa(Y;a)=Si(Y;b)=0,

(b) SP(Y;a)=SY(Y;b) for k =0, 1,2: S,(Y;) is periodic,

(©) Sa(Y; a)=y,, Sa(Y; b) =y, for given numbers y,, y,.

We will confirm that each of these three conditions by itself ensures unique-
ness of the interpolating spline function S,(Y;:). A prerequisite of the
condition (2.4.1.2b) is, of course, that y, = y,.

For this purpose, and to establish a characteristic minimum property of
spline functions, we consider the sets

(2.4.13) H™[a, b),
m > 0 integer, of real functions f: [a, b] > R for which f™~ 1 is absolutely
continuous® on [a, b] and f™ e I?[a, b].* By

Ay[a, b)
we denote the set of all functions in 2 ™[a, b] with f®(a) = f®(b) for k = 0,
1, ..., m — 1. We call such functions periodic, because they arise as restric-
tions to [a, b] of functions which are periodic with period b — a.

Note that S, € o 3[a, b, and that S,(Y; -) € A}[a, b] if (2.4.1.2b) holds.
If f€ o ?[a, b], then we can define

1A= 1 dx

Note that || f|| > 0. However, || f|| = 0 may hold for functions which are not
identically zero, for instance, for all linear functions f(x) = cx + d.

We proceed to show a fundamental identity due to Holladay [see for
instance Ahlberg, Nilson, and Walsh (1967)].

(2.4.1.4) Theorem. If fe X %(a,b), if A={a=xo<x,<-*<x,=b}isa
partition of the interval [a, b], and if S, is a spline function with knots x; € A,
then

1f=Sal? = 1717 = [ISa)?
~2|(1) = SNSRI~ T (09 - SuNSKEE, |

3 See footnote 2 in Section 2.3.4.

* The set I*[a, b] denotes the set of all real functions whose squares are integrable on the
interval [a, b], i, {2 | f(t)]* dt exists and is finite.
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Here g(x)|* stands for g(u) — g(v), as it is commonly understood in the
calculus of integrals. It should be realized, however, that Sy (x) is piecewise
constant with possible discontinuities at the knots x,, ..., x,_ ;. Hence we
have to use the left and right limits of Sy(x) at the locations x; and x;_,,
respectively, in the above formula. This is indicated by the notation x;, x; ;.

PRrOOF. By the definition of || - |,

= 8al? = [ 1776x) = Six) dx
= U1 =2 [ 7 e9site) d + I, 1

= s> -2 L (f"(x) = Sa(x))Sk(x) dx — [|Sa %

Integration by parts gives fori=1,2,...,n

|7 (776x) = Sa(I)Sax) dx = (7(x) - Sa(SKEEL,

Xi-1

[ () - Sz (x) dx

Xi-1

= (/) = SaNSEWEL, = (Fx) - SaSFIEE,
+ f (f (%) — Sa(x))SE(x) dx.

Now $®(x) = 0 on the subintervals (x;_,, x;),and f*, S, S% are continuous
on [a, b]. Adding these formulas for i =1, 2, ..., n yields the proposition of
the theorem, since

300 - SIS, = (F6) - Sxpsils O

With the help of this theorem we will prove the important minimum-norm
property of spline functions.
(2.4.1.5) Theorem. Given a partition A={a = xo < x; < - < x, = b} of the
interval [a, b], values Y={y,,..., y,} and a function fe X *[a, b] with
fx)=yi.fori=0,1,...,n, then || f||* = ||Sa(Y; - )||?, and more precisely
If = Sa(¥s )|* =[£I = [ISa(Y: -)|* >0

holds for every spline function S,(Y; -), provided one of the conditions [com-
pare (2.4.1.2)]

(@) Sa(Y; a)=Si(Y; b)=0,
(b) f € AH%(a, b), Sa(Y; -) periodic,
(¢) f'(@) = Sa(Y; a), f'(b) = Sa(Y; b),
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is met. In each of these cases, the spline function Sx(Y;-) is uniquely
determined.

The existence of such spline functions will be shown in Section 2.4.2.

Proo¥. In each of the above three cases (2.4.1.5a, b, c), the expression

(f'(x) = Salx))S2(x) s — ;(f (x) = Sa(x)Sa(x) [, = 0

vanishes in the Holladay identity (2.4.1.4) if S, = Sa(Y; - ). This proves the
minimum property of the spline function S,(Y; - ). Its uniqueness can be seen
as follows: suppose SA(Y;-) is another spline function having the same
properties as S,(Y;-). Letting So(Y;-) play the role of the function
fe X ?a, b] in the theorem, the minimum property of Sy(Y’; - ) requires that

ISa(Y5 +) — SaY; )12 = ISa(Ys -)I* — ISa(Y; )I* >0,

and since S,(Y; -) and S,(Y; - ) may switch roles,
b
I5a(Y: ) = Sa(¥3 )2 = [ (Sa(Y; x) — Si(Y; x))? dx = 0.
a

Since Sx(Y; - ) and S5(Y; - ) are both continuous,
Si(Y; x) = Si(Y; x),
from which
Sa(Y; x)=Sa(Y; x)+ cx +d

follows by integration. But S,(Y; x) = S,(Y; x) holds for x = a, b, and this
implies c=d = 0. O

The minimum-norm property of the spline function expressed in
Theorem (2.4.1.5) implies in case (2.4.1.2a) that, among all functions f in
A ?[a, b] with f(x;)=y;,i=0, 1, ..., n, it is precisely the spline function
SA(Y; ) with S3(Y; x) = O for x = a, b that minimizes the integral

1 =[P ax

The spline function of case (2.4.1.2a) is therefore often referred to as the
natural spline function. (In cases (2.4.1.2b) and (2.4.1.2c), the corresponding
spline functions S,(Y;-) minimize |f|| over the more restricted sets
#2[a,b] and {fe X>[ab]| f'(@)=yo, £(b)— i} O {f]f(x) =y for
i=0,1,..., n}, respectively.)

The expression f”(x)(1 + f'(x)?)"¥?
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indicates the curvature of the function f(x) at x € [a, b]. If f'(x) is small
compared to 1, then the curvature is approximately equal to f”(x). The value
| £l provides us therefore with an approximate measure of the total curva-
ture of the function fin the interval [a, b]. In this sense, the natural spline
function is the “smoothest” function to interpolate given support points
(xis ), i=0,1,...,n

Spline functions have been generalized in many ways. For instance,
polynomials of degree k are used to define spline functions S, € C*™![a, b]
of degree k as piecewise polynomial functions with continuous (k — 1)-th
derivatives. All these functions share many properties [see Greville (1969),
de Boor (1972)] with the cubic splines considered in this and the next two
sections.

2.4.2 Determining Interpolating Cubic Spline Functions

In this section, we will describe computational methods for determining
cubic spline functions which assume prescribed values at their knots and
satisfy one of the side conditions (2.4.1.2). In the course of this, we will have
also proved the existence of such spline functions; their uniqueness has
already been established by Theorem (2.4.1.5).

In what follows, A ={x;|i=0, 1, ..., n} will be a fixed partition of the
intervil [a, bl by knotsa = x, < x; <**<x,=b,and Y ={y;|i=0,1,...,
n} will be a set of n + 1 prescribed real numbers. In addition let

hj+1:=x1'+l‘_x1', j=0, l,...,n_l.
We refer to the values of the second derivatives at knots x; € A,
(24.21) M;=S8)Y;x;), Jj=01..,n

J
of the desired spline function S,(Y; - ) as the moments M ; of S5(Y; - ). We will
show that spline functions are readily characterized by their moments, and
that the moments of the interpolating spline function can be calculated as
the solution of a system of linear equations.

Note that the second derivative S3(Y; -) of the spline function coincides
with a linear function in each interval [x;, x;,,],j=0, ..., n — 1, and that
these linear functions can be described in terms of the moments M; of
SA(Y; . ):

Sa(Y;x)=M,Z1 7% oy X7

X;
J

B T for x € [x;, x;44]

J j+

By integration,

’ X; — X 2 X — X; 2
(2422) Si(Y;x)= — M,.L%;'fl N M"“(zh. P4,
j+1 j+1
= x) — )3
SA(Y; x)= M‘M 4 A,lj+1 (x XJ) + A,-(x _ xj) + Bj

J 6hj+1 6hj+1
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for x € [x;, x;41},j =0, 1,...,n — 1, where A;, B; are constants of integra-
tion. From Sa(Y; x;) = y;, Sa(Y; Xj11) = yj+1, We obtain the following
equations for these constants 4; and B;:

hisy
Mj 6 + Bj =Y
h3s
M, 6 + Ajhjiy + Bi =y
Consequently,
(24.2.3) B;=y;— M;-L1,

C—v. h
A;= y,;:. LA ng (M;,y — M)).
j+1

This yields the following representation of the spline function in terms of
its moments:

(24.2.4)
Sa(Y; x) = o; + Bix — x;) + v(x — x;)* + 8(x — x;)* for x € [x;, x;.4],

where

aj:=yj,
M,
y‘] :=_5‘l,
_Yiv17Y; 2Mj+Mj+1h
_————hj+l - 6 j+ 1
5.=5aY5x]) _ My — M,

Thus S,(Y; - ) has been characterized by its moments M ;. The task of calcu-
lating these moments will now be addressed.

The continuity of Sy(Y; - )attheknots x = x;,j = 1,2,...,n — 1 [namely,
the relations Sy(Y;x;)=Sa(Y;x;)] yields n— 1 equations for the
moments M ;. Substituting the values (2.4.2.3) for A; and B, in (2.4.2.2) gives

V. uY (xje1 — x)? (x— xj)2
SA(Y, x)— Mj 2hj_+_1 + Mj+l 2hj+l

o —v. h.
+ Y_J+hl_,& __16+1_(Mj+1 — M)
j+1
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Forj=1,2,...,n— 1, we have therefore

v . h h.
J

—v. h h.
SZ(Y§X;L)=XJ'+hl Yi _ 1;1 M, - ng Y
i+1

and since Sy(Y; xj) = Sx(Y; x;),

h; hi+hj,y hjsq _Yiv1—Yi YVi— Vi1
(24.25) EM,-_l + 3 M; + 6 M, = hyos h,
for j=1, 2, ..., n— 1. These are n — 1 equations for the n + 1 unknown

moments. Two further equations can be gained separately from each of the
side conditions (a), (b), and (c) listed in (2.4.1.2).

Case (a): Sx(Y;a)=M,=0=M, = Si(Y; b).
Case (b): Sx(Y; a)=Sx(Y; b)=>M,=M,,

Sa(Y; a) = Su(Y; by npg, 4 Pet Rapg By
6 3 6
=y1 — Vn __yn_yn—l

hl hn

The latter condition is identical with (2.4.2.5) for j = n if we put
huyy=hy, M, =M, Yar1=V1-
Recall that (2.4.1.2b) requires y, = y,.

h h -
Case (c): Sa(Y: @)= yo=>-2 Mo+ 2 M, =220 _y,
3 6 h,
hn hn ' n~— JYn—
S?‘(Y, b)=yp’|:>€Mu-—l +?Mu=yn_y h:’ l'

The last two equations, as well as those in (2.4.2.5), can be written in a
common format:

uJM)—l+2Mj+l)Mj+l=d)’ j=1,2,...,n—1,

upon introducing the abbreviations

hj+1 h
B =] — =
(24.2.6) Chrh B B ST
d.: 6 Yiv+1 =Y Yi—Yi-1 T

! —-hj+hj+l hjv1 h;
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In case (a), we define in addition

(2427) }.0 = 0’ dO = 0, U, = 0, d" = 0’
and in case (c)
s =_6_ yl - yO /
(2423) =1, d, hl( =% ),
= :=£ :__yn_yn—l
T )

2 Interpolation

This leads in cases (a) and (c) to the following system of linear equations for

the moments M,;:
2My + AgM,
Mo +2M, + 4 M,

“n—an—Z + 2Mn—1 + An—an=dn—l’
NnMn—l +2Mn =dn'

In matrix notation, we have

[ 2 4, o |[m] [a]
B 2 A M, dy
(2.4.29) Uy - . .
2 A, . .
0 U, 2 L Mn L dn
The periodic case (b) also requires further definitions,
h
A= 1 s =1 — - s
n hn + hl ”n ’1'1 h" + hl
(24.2.10)
d = 6 YI—y"_yn—yn;l_
" h,+h| h h,
which then lead to the following linear system of equations for the moments
M, M,, ..., M,(=M,):
[ 2 Ay 31 1M 1 ] d,
2 2 Ay M, d,
(2.42.11) Bs - . ' '
2 An— 1
L }'ﬂ ﬂn 2 N | MH‘J | dll
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The coefficients 4;, y;, d; in (2.42.9) and (2.4.2.11) are 'well defined by
(24.2.6) and the additional definitions (2.4.2.7), (2.4.2.8), and (2.4.2.10), re-
spectively. Note in particular that in (2.4.2.9) and (2.4.2.11)

(2.4.2.12) 4;=0, u; =0, Aitpu=1

for all coefficients 4;, y;, and that these coefficients depend only on the
location of the knots x; € A and not on the prescribed values y; € Y nor on
Yo, ¥» in case (c). We will use this observation when proving the following:

(2.4.2.13) Theorem. The systems (2.4.2.9) and (2.4.2.11) of linear equations are
nonsingular for any partition A of [a, b}.

This means that the above systems of linear equations have unique solutions
for arbitrary right-hand sides, and that consequently the problem of interpo-
lation by cubic splines has a unique solution in each of the three cases (a),
(b), (c) of (2.4.1.2).

Proor. Consider the (n + 1) x (# + 1) matrix

[ 2 'R 0 ]
Ho 2 A
A= Ha .
\2 An-1
10 | My 2 |

of the linear system (2.4.2.9). This matrix has the following property:
(242.14) Az=w = max |z| < max |w]
for every pair of vectors z = (zq, ..., z,)7, w= (Wo, ..., w,)T, z, we R*"* 1,
Indeed, let r be such that |z,| = max; |z;|. From Az =w,

BeZp—y + 22, + Mz =w,  (4o=0, 4,=0)
By the definition of r and because yu, + 4, = 1,

m_axlwil = |W,| >2|Z,| "lurlzr—ll —l,|2,+1|
13

= 2Izrl - #rlzrl - Arlzrl
= (2 - ”r'—lr)lzrl

= |z,| =m§x|zi|
1
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Suppose the matrix A were singular. Then there would exist a solution z # 0
of Az =0, and (2.4.2.14) would lead to the contradiction

0 < max|z| <O0.

The nonsingularity of the matrix in (2.4.2.11) is shown similarly. O

To solve the equations (2.4.2.9), we may proceed as follows: subtract u, /2
times the first equation from the second, thereby annihilating u,, and then a
suitable multiple of the second equation from the third to annihilate u, , and
so on. This leads to a * triangular ” system of equations which can be solved
in a straightforward fashion [note that this method is the Gaussian elimina-
tion algorithm applied to (2.4.2.9); compare Section 4.1}:

(2.4.2.15) qo="—Ao/2;up=do/2; 4,:=0;
for k=12 ...,ndo
begin p, = pqy—; + 2;

k= — A/ Pis
U = (dy — - 1)/py end;
Mn = Uy

for k==n-1,n-2...,0do
My =qMy, g +

[It can be shown that p, > 0, so that (2.4.2.15) is well defined; see Exercise
25] The linear system (2.4.2.11) can be solved in a similar, but not as
straightforward, fashion. An ALGOL program by C. Reinsch can be found in
Bulirsch and Rutishauser (1968).

The reader can find more details in Greville (1969) and de Boor (1972),
ALGOL programs in Herriot and Reinsch (1971), and FORTRAN programs in
de Boor (1978). These references also contain information and algorithms
for the spline functions of degree k > 3 and B-splines, which are treated here
in Sections 2.4.4 and 2.4.5.

2.4.3 Convergence Properties of Cubic Spline Functions

Interpolating polynomials may not converge to a function f whose values
they interpolate, even if the partitions A are chosen arbitrarily fine (see
Section 2.1.4). In contrast, we will show in this section that, under mild
conditions on the function f and the partitions A, the interpolating spline
functions do converge towards f as the fineness of the underlying partitions
approaches zero.

We will show first that the moments (2.4.2.1) of the interpolating spline
function converge to the second derivatives of the given function. More
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precisely, consider a fixed partition A ={a=x, < x; <‘** < x,= b} of
[a, b}, and let

M,
M=| :
M
be the vector of moments M of the spline function S,(Y; -) with f(x;) = y;
forj=1,...,n—1, as well as
SA(Y;a)=f'(a), Sa(Y;b)=1"(b)

We are thus dealing with case (c) of (2.4.1.2). The vector M of moments
satisfies the equation

AM =d,

which expresses the linear system of equations (2.4.2.9) in matrix form. The

components d; of d are given by (2.4.2.6) and (2.4.2.8). Let F and r be the
vectors

f"(x0)
Fe= f"(:x‘) ., ri=d—AF = A(M - F),
1)
Writing | z|| *==max; |z;| for vectors z, and ||A|| for the fineness
(24.3.1) A ==m?x | xj+1 — x;]

of the partition A, we have:

(2.432) If fe C*a, bl and | f¥(x)| < L for x € [a, b}, then
IM — F|| < ||| < 3L|A|*.

ProoOF. By definition, ro = dy — 2f"(x,) — f"(x,), and by (2.4.2.8),

6 - ’ " ”
ro=-— Y1 = Yo = Yo| — 2f"(x0) = f"(x1)-
hy\ hy
Using Taylor’s theorem to express y, = f(x,) and f”(x,) in terms of the
value and the derivatives of the function f at x, yields

6 h % " i 4 ’
ro= I [f'(xo) + éfﬂ(xo) +%f (x0) +%f‘ o) —f (xo)]
=30 = |17 + ) + )|

h2 h2
=3 [9%) =3 1)
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with 7, 7, € [xo, x;]. Therefore
[ro| <3L[A|%
Analogously, we find for
Tn=dy — ["(x,—1) = 2/"(x,)
that
|| <3L|A|%.

For the remaining components of r =d — AF, we find similarly
ri=di— i f7(x- 1) = 2f"0e) — A; £ (x50 1)

6 Yiv1 = Vi Vi~ Yi-1
h +h,+1 hjyy h;

h ” ” _ j+1 ”
h +h f (xj l) 2[ ( ]) h +h1+1f ( j+l)

Taylor’s formula at x; then gives

3
h}+1

= B+ B )+ B ) 1 ey
—fx;) + éf"(xj) - —éfm(xj) + %f‘“(fz)l
2
— h; {f”(xj) = h; f7(x;) + };_jf(4)(f3)]

= 2f"(x;)(h; + hjsy)

S5+ by f7(x;) + hj—zﬂ‘fm(ﬁ)] l

- hj+1

1 ra h}3 4 J 4 J+1 4
= +lh [ i1 re) ) 4 Zf( (1,) — f( (13) — 1t )(1’4)].

J j+1

Here 7y, ..., 7, € [x;_4, xj;,]. Therefore

Iril 3L [h+1+h?]<%L||AH2-

1
hi + h;,
forj=1,2,...,n— 1. In sum,
Irll < 3L|A)?

and since r = A(M — F), (2.42.14) implies |M — F|| < |r|. 0
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(2.4.3.3) Theorem. Suppose f € C*[a, b] and | f¥(x)| < Lfor x € [a, b]. Let A
be a partition A = {a = xo < ‘' < x, = b} of the interval [a, b], and K a
constant such that

4]

|x,-+1—x,-|

<K forj=0,...,n—1.

If S, is the spline function which interpolates the values of the function f at the
knots xo, ..., x, € A and satisfies Sy(x) = f'(x) for x = a, b, then there exist
constants C, < 2, which do not depend on the partition A, such that for
x € [a, b],

| f®(x) — S®(x)| < CLKJA|*™%  k=0,1,2,3.

Note that the constant K > 1 bounds the deviation of the partition A from
uniformity.

PRrOOF. We prove the proposition first for k = 3. For x € [x;_,, x;],

-M;_
SK(x) = ) = L - f7(x)
_M;- f”(xj)_ M, - S(xj-1)
- h; h;
+ f”(xj) _f”(x) _’E-.f”(xj'l) _f"(x)] —f'"(x).
Using (2.4.3.2) and Taylor’s theorem at x, we conclude that
A 2
15269 — 70| <38 4 Ll — 7 + G522 ooy
. _ 2
— (s = ) (Tl 1) — hy £ ()
Al*  LjA|?
L” hi| +§ﬂhj'~’—’ N1 M2 € [x;- 1, x;}

By hypothesis, [|A||/h; < K for every j. Thus | f"(x) — Sx(x)| < 2LK|A].

To prove the proposition for k = 2, we observe: for each x € (a, b) there
exists a closest knot x; = x/(x), for which |x;(x) — x| < 4||A||. From

7() = $30) = "(s0) = Sase) + [ (700 = Su(w) e
and since K > 1,
|/7(x) = Sa(x)| <2L|A|* + 3]A] - 2LK|A]|

i
3

<
<ZLK|A|?,  xe€[a, b
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We consider k = 1 next. In addition to the boundary points &, :=a,
&+ 1 '=Db, there exist, by Rolle’s theorem, n further points &; € (x;_,, x;),
j=1,..., n, with

fE)=SaE), Jji=01...,n+1

For any x € [a, b] there exists a closest one of the above points £; = £;(x), for
which consequently

[&0) — x| < [|A].
Thus

X

S =Sal)= | (£7(e) - Si(e)) e,

§i(x)

and
| /'(x) — Sa(x)| <3LK[A|* - |A] = ZLK|A|P,  x € [a, b].
The case k = 0 remains. Since
f(x)=Sax)=[ (/) - Sa(t) .
* xj(x)
it follows from the above result for k = 1 that

|/(x) = Salx)| <ZLK|A[* - 3[A] =3LK[A]*,  xe[ab]® O

Clearly, (2.4.3.3) implies that for sequences

Ap=la=xP <xP<--<xtM=b}, m=0,1,.

ey

of partitions with A,, —» 0 and

the corresponding spline functions S, and their first three derivatives con-
verge to f and its corresponding derivatives uniformly on [a, b]. Note that
even the third derivative /™ is uniformly approximated by S} , a usually
discontinuous sequence of step functions.

5 The estimates of Theorem (2.4.3.3) have been improved by Hall and Meyer (1976):
lfO(x) — SO(x)| < qL|A[*™% k=0, 1, 2, 3, with co:=5/384, c,=1/24, c,=3/8,
¢y = (K + K~ ')/2. Here c, and c, are optimal.
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2.4.4 B-Splines

Spline functions are instances of piecewise polynomial functions associated
with a partition
A={a=xy<x; <" <x,=b}

of an interval [q, b]. In general, a real function f:[a, b] > R is called a
piecewise polynomial function of order r or degree r — 1 if, for each i =
0,...,n — 1, the restriction of f to the subinterval (x;, x;,,) agrees with a
polynomial p;(x) of degree <r — 1. In order to get a 1-1 correspondence
between f and the sequence (po(x), p1(x), ..., P,—1(x)), we define f at the knots
X;, i=0,...,n— 1, so that it becomes continuous from the right, f(x;) :=
f(x; +0),0<i<n-—1and f(x,) = f(b) := f(x, — 0).

Thus, the spline functions S, of degree k introduced earlier are polynomial
functions of degree k that are (k — 1)-times differentiable at the interior knots
x;, 1 <i<n—1of A By S, , we denote the set of all spline functions S, of
degree k, which is easily seen to be a real vector space of dimension n + k: In
fact, the polynomial S,|[x,, x;] is uniquely determined by its k + 1 coeffi-
cients; this in turn already fixes the first k — 1 derivatives (=k conditions)
of the next polynomial S,|[x,, x,] at x,, so that only on¢ degree of freedom
is left for choosing S,|[x,, x,]. As the same holds for all further polyno-
mials S;|[x;, x;41],i=2,...,n— l,onefindsdim S, , =k + 1+ (n—1)-1=
k+n

B-splines are special piecewise polynomial functions with remarkable
properties: they are nonnegative and vanish everywhere except on a few
contiguous intervals [x;, x;,,]. Moreover, the function space S, , has a basis
consisting of B-splines. As a consequence, B-splines provide the framework
for an efficient and numerically stable calculation of splines.

In order to define B-splines, we introduce the function f,: R — R

£ = (t — x), == max(t — x,0) = {0 fort < x

and its powers f7, fi(t):= (¢t — x),, r > 0. Note that f, depends on a real
parameter x. The function f(-) is composed of two polynomials of degree <
r: the 0-polynomial Py(t) := O for t < x and the polynomial P, (t) := (t — x)’
for t > x. Clearly, f7 € C"! for r > 1. Further, we recall that under certain
conditions, the divided difference f[t;, t;4s,..., t;;,] Of a real function f(t),
fiR—> R is well defined for all ¢t; <t;,, < <t;,,, even if the ¢; are not
mutually distinct: The only requirement is that f be n; — 1-times differentiable
att=t;,j=1i,i+1,...,i+rif t; occurs n; times among the t;, £;,4, ..., t;4,.
In this case, by (2.1.5.9)

t—x fort>x

o)

St sty ] = ST it =ty =" =t

(2.44.1)
_ f[ti+l’ (RS} ti+r] _f[ti’ .

R P .
Sl st ] = ; : isss 1], otherwise.
i+r =




108 2 Interpolation

It follows by induction over r (see Example 2 of Section 2.1.5) that the divided
differences of the function f are linear combinations of its derivatives at the
points ;.

i+tr nji—1
24.42) Sty tivts oo bigr] = 2 % Xb 194,
J=t s=
where fO(t;) := f(t)).
Let
t={ti}mcjcrmr —0O <M< 0,

be any finite or infinite nondecreasing sequence of reals. Then for any integer
r>1 and i with m <i <i+r <m, the ith B-spline of order r associated
with t is defined as the following function in x:

(24.43) B;, (x) = (t;y, — ti)fxr-l Ctis tivas o5 Lisr ],

for which we also write B; or B;,. Clearly, B;, (x) is well defined for all

X F# tiy tigry o5 Lisy, @and by (2.4.4.2), is a linear combination of the functions
(in x),

dS
— ) , s=0,1,...,m—1, i<j<i+r,
dt ¢

=t;

if t; occurs n; times among the t;, t;,4, ..., t;y,. Thus B; , , is a linear combina-
tion of

(24.44) (4, — x5, where max{r — n;,0} <s<r—1, i<j<i+r

Hence the function B;, , coincides with a polynomial of degree at most r — 1
on each open interval (¢;, t;,,) withi < j < i+ rand t; < t;,,. Thatis, B;  , is
a piecewise polynomial function of order r with respect to a certain partition
of the real axis given by t; with i < j <i+r, t; <t;,,. At the knots x = t;,
t; e t, the function B;, (x) may have jump discontinuities. In that case, we
follow our previously stated convention and define B;, (t;) := B;, (t; + 0).
Thus B;,, is a piecewise polynomial function that is continuous from the
right. Also by (2.4.44) for given t = {t;}, the B-spline B, ,(x) = B;, (x) is
(r — n; — 1) times differentiable at x =t;, if t; occurs n; times within t;,
tiv1s ---» Liy,- Hence the order of differentiability of the B;,.(x) at x =¢; is
governed by the number of repetitions of ¢; in t.

ExaMpLE. For the finite sequence t: t, < t; =t, =t; <t, =ts < tg, the B-spline B, 5
of order 5 is a piecewise polynomial function of degree 4 with respect to the partition
t; <ts < tg of R For x = t3, s, t¢ it has continuous derivatives up to the orders 1, 2,
and 3, respectively, as n; = 3,n, = 2, and ng = 1.

We note some important properties of B-Splines:
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A
BO,‘I,t B2,2,t
1__
—d L A .
T 1 Y T T >
to t, t, t; t, ts

Figure 2 Some simple B-splines.

(2.4.4.5) Theorem. (a) B; , ((x) = O for x ¢ [t;, t;4,]
(b) B;, (x)>0 fort; < x < t3,.
(c) For all x withinft; < x <sup t;

Z Bl',r,t(x) = 1’
]
and the sum contains only finitely many nonzero terms.

By that theorem, the functions B;, = B;,, are nonnegative weight func-
tions with sum 1 and support [¢;, t;,,], if t; < t;,,: they form a “partition of
unity.”

PROOF. (a) For x < t; <t < t;,,, fI1(t) = (t — x)""! is a polynomial of degree
(r — 1) in ¢, which has a vanishing rth divided difference
T tivs oo iy ] =0 = B (x)=0

by Theorem (2.1.3.10). On the other hand, if t; < t < t;,; < x, then fI71(f) :=

(t — x)7! = Qs trivially true, so that again B, ,(x) = 0.
(b) Forr =1and¢; < x < t;,,, the assertion follows from the definition
B () =[(tiss = %) —(t; —x),]=1-0=1,

and for r > 1, from recursion (2.4.5.2) for B-splines B; ,, which will be derived
later on.

(c) Assume first t; < x < t;;;. Then by (a), B;,(x) =0 for all i, r with
i+r<jandalli>j+ 1,so that

Z B;,(x) = ZJ: B; ,(x).

i=j—r+1
Now, (2.4.4.1) implies
B; (%) = f{  [tivas tivzs -5 tivrd = S5 0tis titrs oo s binpmr 1

Therefore,

X B 0) = i s s ieed = T s s 1 = 1= 0.
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Here, the last equality holds because the function f~!(t) = (t — x)"™* is
a polynomial of degree (r — 1) in t for ¢; < x < t;;, <t <t;,,, for which
FI a1y -+ > tj2,] = 1 by (2.1.4.3), and the function £ "1(t) = (¢ — x)}"! van-
ishesfort;_,,, <t <t; < x < tj,,.Forarbitrary x = t; < sup ¢;, the assertion
follows because

Bj,r(tj) = hm Bi,r(x)' D
x|t;

We now return to the space S, , of spline functions of degree k. We want
to construct a sequence t = {t;} such that the corresponding B-Splines B;, ,(x)
form a basis of S, . For this purpose, we associate with the partition A the
particular finite sequence t = {t;}_, <j<n+x defined by

(24.46) t_, =" "=ty=Xg<ti=x; < <l ==l =X,
Then the n + k B-splines of order k + 1
(24.47) By (%) = (tisksr — L o5 tivien 1 —k<i<n-—1,

will form a basis of S, ,: In order to show that B, ,, , € Sy, we note first that
B; ;+1., agrees with a polynomial of degree < k on each subinterval [x;, x;4;]
of [a, b], and that B;,,,  has continuous derivatives up to order (k + 1) —
n; — 1 = k — 1 at the interior knots x;, i =1,...,n — 1, of A, since any such
t; = x; occurs only once in t (2.4.4.6), n; = 1.

On the other hand, by a result of Curry and Schoenberg (1968), which we
quote without proof, the n + k functions B, (x), —k <i <n — 1, are lin-
early independent. Since the dimension of S, , is equal to n + k, these func-
tions must form a basis of S, ;.

2.4.5 The Computation of B-Splines

B-splines can be computed recursively. The recursions are based on a remark-
able generalization of the Leibniz formula for the derivatives of the product
of two functions. Indeed, in terms of divided differences, we find the following.

(2.4.5.1) Product Rule for Divided Differences. Suppose t; < t;1 <" < t;4q.
Assume further that the function f(t) = g(t)h(t) is a product of two func-
tions that are sufficiently often differentiable at t =t;, j =i, ...,i + k so that
gltis tivts o> i and h[t;, t, e, ..., t;y,] are defined by (2.4.4.1). Then

i+k

St tisys s tia] = Z glti, tives oo tR0E, gy ooy L)
r=i

Proor. From (2.1.5.5) and (2.1.5.6), the polynomials
i+k

Z'g[ti"'-’ tJt—1t)...(t—t,_,)
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and

i+k

%, Aty s (€ = ) o (€ = tisy)

interpolate the functions g and h, respectively, at the points t=t,
ti+1s---» Lisx (in the sense of Hermite interpolation, see (2.1.5), if the t; are not
mutually distinct). Therefore, the product polynomial
i+k
F(t) = Z g[tis LR tr](t - xl') s (t - ti—l)
itk

’ Z h[ts’ cets ti+k](t - ts+1) (t - ti+k)

also interpolates the function f(¢) at t =+t ..., t;,,. This product can be
written as the sum of two polynomials

itk
F@) = Z;: Z 4 2 -+ = Py(t) + P,(t).

Since each term of the second sum ), is a multiple of the polynomial
[Ti# (¢ — t;), the polynomial P,(t) interpolates the O-function at t =t¢;, ...,
t:+x Therefore, the polynomial P, (t), which is of degree < k, interpolates f{(t)
att =t ..., t;s,. Hence, P;(t) is the unique (Hermite-) interpolant of f(t) of
degree < k.

By (2.1.5.6) the highest coefficient of P;(t) is f[t;, ..., t;+x]. A compari-
son of the coefficients of t* on both sides of the sum representation P, (t) =
Y r<s ... of P, proves the desired formula

i+k

flty - tind = Z:: glti, ..., r,Jh0t,, ..., il O

Now we use (2.4.5.1) to derive a recursion for the B-splines B; ,(x) = B;, (x)
(2.4.4.3). To do this, it will be convenient to renormalize the functions B; ,(x),
letting

Ni,r(x) =

Bi r X -
_(__) = [Tty tivts oo Liveds

ti +r tl'
for which the following simple recursion holds:

Forr>2andt; < t;,,

X — t,: ti r— X
(2452) Ni,r(x) = t Ni,r—l (X) + t * 7Ni+l,r—l(x)'

Livy — L i+r — L

PROOF. Suppose first x # t; for all j. We apply rule (2.4.5.1) to the product
T = - X7 =0 — ) — X7 =902 0).
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Noting that g(t) is a linear polynomial in ¢ for which by (2.1.4.3)
gltl=t;—x, gt i1 =L glts,...,t;1=0 forj>i+ 1,
we obtain

L et 1 = 6 — )20 oot 1+ 1 T2, s b, ]

ti—x, . _ _
= (2 [tisgs ooty — f2 2[00 o5 tisyeq])
ti+r—ti
+ 1 £ 2 [ty s Bigy ]
x_ti

M RS Ay fir x'fx'_z[ti+1, N 2 N

Lsr — L Live — 1

and this proves (2.4.5.2) for x # ¢, ..., t;,,. The result is furthermore true for
all x since all B; (x) are continuous from the right and ¢; < ¢,,,.

The proof of (2.4.4.5), (b) can now be completed: By (2.4.5.2), the value
N; ,(x) is a convex linear combination of N;,_; (x) and N;,; ,_y(x) fort; < x <
t;+, with positive weights A;(x) = (x — t;)/(t;s, — t;) > 0, 1 — A,(x) > 0. Also
N;,(x) and B;,(x) have the same sign, and we already know that B, ;(x) =
0 for x ¢ [t;, t;4,] and B, {(x) > O for t; < x < t;,,. Induction over r using
(2.4.5.2) shows that B, ,(x) > Ofort; < x < t;4,.

The formula
e T L S

i+r—1 " Y i+r ti+l

(2453 B,(9=-

is equivalent to (2.4.5.2), and represents B;,(x) directly as a positive linear
combination of B;,_;(x) and B;,; ,_;(x). It can be used to compute the values
of all B-splines B; ,(x) = B, ,(x) for a given fixed value of x.

To show this, we assume that there is a t; € t with ¢; < x < t;,, (otherwise
B; (x) = 0 for all i, r for which B,, = B;,, is defined, and the problem is
trivial). By (2.4.4.5)a) we know B; ,(x) = O for all i, r with x ¢ [t;, ¢;,,], i.e., for
i<j—rand for i > j+ 1. Therefore, in the following tableau of B;,:=
B; ,(x), the B;, vanish at the positions denoted by 0:

0 0 0 0
0 0 0 B,
0 0 B;_»3 Bj-,.4

(2.4.54) 0 Bjy, Biys Biy.
B,l Bj,Z Bj,s Bj,4
0

0 0 0

By definition, B;; = B; ;(x) = 1 for t; < x < t;,;, which determines the first
column of (2.4.5.4). The remaining columns can be computed consecutively
using recursion (2.4.5.3): Each element B;, can be derived from its two left
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neighbors B;,_, and B, ,_;

B

- % B

i,r—1 ir

Bi+1,r—1

This method is numerically very stable because only nonnegative multiples of
nonnegative numbers are added together.

ExampLE. Fort; =1i,i =0, 1, ... and x = 3.5 € [t,, t4) the following tableau of values
B,, = B; (x) is obtained.

r= 1 2 3 4
i=0 0 0 0 1/48
i=1 0 0 1/8  23/48
i=2 0 12 6/8 23/48
i=3 1 1/2 1/8 1/48
i=4 0 0 0 0
For instance, B, 4 is obtained from
35-26 6-—351 23

Bra=Bal3) =555t 635~ ®

co

We now consider the interpolation problem for spline functions, namely,
the problem of finding a spline S, € S, that assumes prescribed values at
given locations. Since the vector space S,, has a basis of B-splines, see
(2.4.7.7), we may proceed as follows. Assume that r > 1 is an integer and
t = {t;}, <i<n+r a finite sequence of real numbers satisfying

by S < Sy,

and t; < t;,, fori= 1, 2,... N. Denote by Bi(x) = B, (x), i =1,..., N, the
associated B-splines, and by

L= { i o;B(x)o; € R},
i=1

the vector space spanned by the B,, i = 1, ..., N. Further, assume that we are
given N pairs (;, f;),j = 1, ..., N, of interpolation points with

i<y <<y

These are the data for the interpolation problem of finding a function S € &, ,
satisfying

(2.4.5.5) SE)=f, Jj=1,...,N.

Since any S € %, , can be written as a linear combination of the B, i =
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1,..., N, this is equivalent to the problem of solving the linear equations

(2.4.5.6) i aB()=f, j=1...,N.

i=1

The matrix of this system

B (&) - Bw(&)
i : .

By(&) - By(tw)

has a special structure: 4 is a band matrix, because by (2.4.4.5) the functions
B,(x) = B;, (x) have support [t;, t;,,], so that within the jth row of 4 all
elements By(¢;) with t;,, < &; or t; > ¢; are zero. Therefore, each row of 4
contains at most r elements different from 0, and these elements are in
consecutive positions. The components B,(£;) of 4 can be computed by the
recursion described previously. The system (2.4.5.6), and thereby the interpo-
lation problem, is uniquely solvable if A is nonsingular. The nonsingularity
of A can be checked by means of the following simple criterion due to
Schoenberg and Whitney (1953), which is quoted without proof.

(2.4.5.7) Theorem. The matrix A = (B,(&;)) of (2.4.5.6) is nonsingular if and only
if all its diagonal elements B,(&) # O are nonzero.

It is possible to show [see Karlin (1968)] that the matrix A4 is totally
positive in the following sense: all r x r submatrices B of 4 of the form

B=(a;,;)pq=1 withr>1, i\ <iy<'<i, ji<j,<' <]}

have a nonnegative determinant, det(B) > 0. As a consequence, solving
(2.4.5.6) for nonsingular A by Gaussian elimination without pivoting is numer-
ically stable [see de Boor and Pinkus (1977)]. Also the band structure of 4
can be exploited for additional savings.

For further properties of B-Splines, their applications, and algorithms the
reader is referred to the literature, in particular to de Boor (1978), where one
can also find numerous FORTRAN programs.

EXERCISES FOR CHAPTER 2

1. Let L{(x) be the Lagrange polynomials (2.1.1.3) for pairwise different support

abscissas xo, ..., x,, and let ¢; = L;(0). Show that
1 forj=0,
(a) ic,-x’=< 0 forj=1,2,...,n,
= ‘(—l)f'xoxl...x,, forj=n+1;
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2. Interpolate the function In x by a quadratic polynomial at x = 10, 11, 12.

(a) Estimate the error committed for x = 11.1 when approximating In x by the
interpolating polynomial.
{b) How does the sign of the error depend on x?

3. Consider a function f which is twice continuously differentiable on the interval
I ={-1, 1]. Interpolate the function by a linear polynomial through the support
points (x;, f(x;)), i =0, 1, xo, x; € I. Verify that

=1} max | £7(E)] max |(x — xo)(x — xi)]

is an upper bound for the maximal absolute interpolation error on the interval I.
Which values xq, x; minimize «? What is the connection between (x — xo) x
(x — x,) and cos(2 arccos x)?

4. Suppose a function f(x) is interpolated on the interval [a, b] by a polynomial
P,(x) whose degree does not exceed n. Suppose further that fis arbitrarily often
differentiable on [a, b] and that there exists M such that | f¥(x)| < M fori =0,
1,2, ... and any x € [a, b]. Can it be shown, without additional hypotheses about
the location of the support abscissas x; € [a, b], that P,(x) converges uniformly
on {a, b} to f(x) as n —» 00 ?

5. (a) The Bessel function of order zero,

Jo(x) = 11—[ fo cos(x sin t) dt,

is to be tabulated at equidistant arguments x; = xo + ih,i=0,1,2,.... How
small must the increment h be chosen so that the interpolation error remains
below 1079 if linear interpolation is used?
(b) What is the behavior of the maximal interpolation error
0maxl | Pa(x) — Jo(x)]
as n— oo, if P,(x}) interpolates Jo(x) at x = x™ =i/n,i=0, 1, ..., n?
Hint : 1t suffices to show that [JP(x)| <1fork=0,1,....
(c) Compare the above result with the behavior of the error
0max |Sa(x) — Jo(x)]
<x<1
as n— oo, where S, is the interpolating spline function with knot set
A, = {x(™} and S, (x) = Jo(x) for x =0, 1.

6. Interpolation on product spaces: Suppose every linear interpolation problem
stated in terms of functions ¢, , ¢4, ..., @, has a unique solution

O(x) = iiaiq)i(x)

with ®(x,) =fi, k=0, ..., n, for prescribed support arguments x,, ... x, with
X; # Xj, i # j. Show the following: If Yo, ..., ¥ is also a set of functions for
which every linear interpolation problem has a unique solution, then for every
choice of abscissas

X0, X1y ey Xns X # x5, i#],

.VOs.Vb---,y.n, y;#}’j, i#jy
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and support ordinates
Sixs i=0,....,n, k=0,...,m,

there exists a unique function of the form

O(x, y)= 3, X @ (Wuly)
=0 u=0
with Q(xi, yk)=ﬁk’ i= 0, 1, A (N k= 0, ..,

7. Specialize the general result of Exercise 6 to interpolation by polynomials. Give
the explicit form of the function ®(x, y) in this case.

8. Given the abscissas

Yo, Y15 -5 Ymo ViF VY, i¥)s

and, for each k =0, ..., m, the values

xP,ox®, L x®, x X, i,
and support ordinates

Sixs i=0,....,n, k=0,...,m,
suppose without loss of generality that the y, are numbered in such a
fashion that

Ng =Ny =" 2Ny,

Prove by induction over m that exactly one polynomial
P(x,y)= 3} Y anxy
p=0 v=0
exists with
PO®, y)=fu, i=0,..,m, k=0,...,m

9. Is it possible to solve the interpolation problem of Exercise 8 by other
polynomials

M N,
P(x’ .V) = Z avuxvyu7
n=0 v=0

requiring only that the number of parameters a,, agree with the number of
support points, that is,

m M

Ym+1)=Y N, +1)?

u=0 u=0

Hint: Study a few simple examples.

10. Calculate the inverse and reciprocal differences for the support points
X; l 01 -1 2 =2
L1333 %
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and use them to determine the rational expression ®*' (x) whose numerator and
denominator are quadratic polynomials and for which ®* ?(x;)=f;, first in
continued-fraction form and then as the ratio of polynomials.

11. Let ®™ " be the rational function which solves the system $™ " for given support
points (xx, i), k=0,1,...,m + n:

(ao + a; Xy + -+ a,,.x'{) —ﬂ(bo + blxk + -+ b,.x:) = 0,
k=0,1,...,m+n.
Show that @™ "(x) can be represented as follows by determinants:

| fis X — X, ooy (e = X)™ Ok = X) oy -o00 (i — XVAIRES

[1, xe — %, ..oy (e — X)™ (% — X) fis o0 (ke — XVSRelf2E

Here the following abbreviation has been used:

o™ n(x) -

xo Co

- 31 N

law, ..., Glp2g=det |~ :
Om+n - Cm+n

12. Generalize Theorem (2.3.1.11):

(a) For 2n + 1 support abscissas x; with
A< Xg< Xy <" <Xy,<a+2n

and support ordinates yo, ..., y2,, there exists a unique trigonometric
polynomial

T(x) = 4ao + ¥ (a; cos jx + b sin jx)
j=1
with
T(xx)=y fork=0,1,...,2n

(b) If yo, -.., y2a are real numbers, then so are the coefficients a;, b;.
Hint: Reduce the interpolation by trigonometric polynomials in (a) to
(complex) interpolation by polynomials using the transformation T(x) =
Y _a c;€%. Then show c_; =7 to establish (b).

13. (a) Show that, for real x, ..., x,,, the function

2n X — X
t(x)= [] sin *
k=1 2
is a trigonometric polynomial
n
$a, + Zl (a; cos jx + b; sin jx)
i=

with real coefficients a;, b;.
Hint: Substitute sin ¢ = (1/2i)(e'® — e~ ).
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(b) Prove, using (a) that the interpolating trigonometric polynomial with sup-
port abscissas x;,

A< Xg< Xy "< Xap<a+2m,

and support ordinates yo, ..., y2, is identical with

T = 3 300

where

ti(x)= n sin x—f~ n sin x—"—r—xf.
*2i

k%l

14. Show that for n + 1 support abscissas xx with
0<xg<xy <" <X, <71

and support ordinates yo, ..., Y, a unique “cosine polynomial”
C(x)= Y a; cos jx
j=o0

exists with C(x)) =y, k=0,1,...,n
Hint: See Exercise 12.

15. (a) Show that for any integer j
Z cos jx, = (2m + 1)h(j),

Z sin jx; = 0,
k=0
with

2nk
2m + 1

s k=0,1,...,2m,

Xx =

and

1 forj=0mod 2m + 1
0 otherwise.

)=

(b) Use (a) to derive for integers j, k the following orthogonality relations:

2m
> sin jx,sin kx, = 22 E L () — k) — h(j + )}
=0
2m 1

cos jx; cos kx; = [h(j — k) + h(j + k)],
i=0
2m

Z COs jx,- sin kxi =0.

i=0
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16.

17.

18.

Suppose the 2n-periodic function f: R — R has an absolutely convergent Fourier
series

f(x)=4ao + Z (a; cos jx + b; sin jx).
=1

m
¥(x) =340 + Y (A; cos jx + B; sin jx)
i=1

be trigonometric polynomials with

2nk

W(xi) = f(x), X = Im+1’

fork=0,1,..., 2m.
Show that

W
Av=a + Z [@p2m+ 1)+x + Bp2m+1y-1); 0<k<m,
p=1

By = b, + zl[bp(2m+l)+k ~ bpiam+ 1)1} I1<k<sm
=

Formulate a Cooley-Tukey method in which the array B[ ]is initialized directly
(BLj1 =f;) rather than in bit-reversed fashion.
Hint: Define and determine explicitly a map ¢ = a(m, r, j) with the same replace-
ment properties as (2.3.2.6) but (0, r, 0)=r.

Let N:=2". Consider the N-vectors f*=[fo, ..., fn-1]", B=[Bo., --., Bn-1]"
(2.3.2.1) expresses a linear transformation between these two vectors,
B = (1/N)Tf, where T = [t;] with t = e 2*U¥/N,

(a) Show that T can be factored as follows:
T = QSP(D,_SP) ... (D, SP),

where § is the N x N matrix

The matrices D, = diag(1, 69, 1,89, ..., 1,6%-,),I=1, ..., n — 1, are dia-
gonal matrices with

00 = exp(~2miF/2"~17Y),  F= [—2[,], r odd.

Q is the matrix of the bit-reversal permutation (2.3.2.8), and P is the matrix of
the following bit-cycling permutation {:

Cloo+ 042+ + 0ty 92" V)= y + 002 + 0+ 022" L,
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(b) Show that the Sande-Tukey method for fast Fourier transforms corresponds

to multiplying the vector f from the left by the (sparse) matrices in the above
factorization.

(c) Which factorization of T corresponds to the Cooley-Tukey method?
Hint: T differs from T by a permutation.

19. Investigate the numerical stability of the methods for fast Fourier transforms
described in Section 2.3.2.

Hint: The matrices in the factorization of Exercise 18 are almost orthogonal.

20. Given a set of knots A = {xq < x; < < x,} and values Y :={y,, ..., y,}, prove
independently of Theorem (2.4.1.5) that the spline function SA(Y;-) with
Y5 x0) = SX(Y; x,) = 0 is unique.
Hint: Examine the number of zeros of the difference S5 — 5% of two such spline
functions. Note that this number is incompatible with S, — S, # 0.

21. The existence of a spline function SA(Y; -) in cases (a), (b), and (c) of (2.4.1.2) can
be established without explicitly calculating it, as was done in Section 2.4.2.

(a) The representation of S,(Y; -) requires 4n parameters a;, B, 7;, §;. Show
that in each of the cases (a), (b), (c) a linear system of 4n equations results.
(n + 1 = number of knots.)

(b) Use the uniqueness of S(Y; - } (Exercise 20) to show that the system of linear
equations is not singular, which ensures the existence of a solution.

22. Show that the quantities d; of (2.4.2.6) and (2.4.2.8) satisfy
d;=3"(x;)+ O0(JAl), ji=0,1,...,n,
and even
d; =31"(x;)+ O(JA|*), Jj=1,....,n—1,
in the case of n + 1 equidistant knots x; € A.

23. Show that Theorem (2.4.1.5) implies: If the set of knots A’ < [a, b] contains the
set of knots A, A’ © A, then in each of the cases (a), (b), and (c),

1A= 184 (Y5 ) = 18a(Y5 )
24. Suppose S(x) is a spline function with the set of knots
A={a=xo<x; < <x,=b}
interpolating f € X"*(a, b). Show that
b
17 = Sall? = [ (£() = Sa(x)f () dx

if any one of the following additional conditions is met:
(@) f'(x)=Sa(x) forx=a,b.
(b) f"(x) = Si(x) for x=a,b.
(c) Sais periodic and f € X "3(a, b).
25. Prove that p, > 1 holds for the quantities p,, k = 1, ..., n, encountered in solu-

tion method (2.4.2.15) of the system of linear equations (2.4.2.9). All the divisions
required by this method can therefore be carried out.
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26.

27.

28.

29.

Define the spline functions S; for equidistant knots x; = a + ih, h > 0,i=0, ..
n, by

-

Si(x) =6, i, k=0,....,n and Sj(xo)=Sj(x,)=0.
Verify that the moments M,, ..., M,_ of S; are as follows:

1 . .
Mi=-EMi+l, l=l,...,j—2,

1
Ml.=—-p M;_,, i=j+2,...,n—1,

=62+ 1/pj—y + 1/pa_j-y

R A= 1py = 1pae ey
M= (6h"2 = M) forj#0,1,n—1,n,
Pi-1
1 i
Mj+1=*' (6h 2—Mj)
Pr-j-1

where the numbers p; are recursively defined by p; :=4 and
pi=4—1/p;—y, i=23 ...
It is readily seen that they satisfy the inequalities

d=p,>py> - >p>pie1>2+./3>37  025<1/p; <03.

Show for the functions S; defined in Exercise 26 that for j=2,3,...,n — 2 and
either x € [x;, iy} j+1<is<n—-lorxe[x_,x] 1<i<j—1,

h2
s/l < 1M

Let S4, ; denote the spline function which interpolates the function f at prescribed
knots x € A and for which ’

S4: r(x0) = SX; s(xa) = 0.
The map f— Sa, ; is linear, that is,
Sais+g=3Sa,7+ Saqs Saiar =0Sa; .

The effect on S,, , of changing a single function value f(x;) is therefore that of
adding a corresponding multiple of the function S; which was defined in Exercise
26. Show, for equidistant knots and using the results of Exercise 27, that a
perturbation of a function value subsides quickly as one moves away from the
location of the perturbation. Consider the analogously defined Lagrange polyno-
mials (2.1.1.2) in order to compare the behavior of interpolating polynomials.

Let A={xo < x; <*** < Xu}.
(a) Show that a spline function S, with the boundary conditions
(.) S&k)(xo) = Sg)(xn) = 07 k = Oa 1’ 29

vanishes identically for n < 4.
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(b) For n = 4, the spline function with (*)is uniquely determined for any value ¢
and the normative condition

Sa(x;)=c.

Hint: Prove the uniqueness of S, for ¢ = 0 by determining the zeros of % in
the open interval (x,, x,). Deduce from this the existence of S, by the
reasoning employed in exercise 21.
(c) Calculate S explicitly in the following special case of (b):
x;=-2,—-101,2, c=1

30. Let & be the linear space of all spline functions S, with knot set
A ={xg < - < x,} and Si(x,) = Sa(x,) = 0. The spline functions So, ..., S, are
the ones defined in Exercise 26. Show that for Y ={y,, ..., ya},

Sa(Y; xy= jg:oy,-sj(x).

What is the dimension of &?

Exponential spline
———— Cubic spline

-

Figure 3 Comparison of spline functions.

31. Let E, ((x) denote the spline-like function which, for given 1;, minimizes the
functional

E[y]= g L:,‘i“[(y”(X))2 + A2y (x))*] dx

over X *(a, b). [Compare Theorem (2.4.1.5).]
(a) Show that E, , is between knots of the form

Ea, p(x) = o + Bi(x — x;) + vii(x — x;) + Si@i(x — x;), Xx; < x < Xjq,
i=0,...,N—1,

Uix) = 2 Leoshl) — 11, ¢i(x) = 75 [sinh(hx) — Aox]

with constants a;, f;, 7:, d;. Ea, s is called exponential spline function.
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(b) Examine the limit as 4; - 0.
(c) Figure 3 illustrates the qualitative behavior of cubic and exponential spline
functions interpolating the same set of support points.
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Topics in Integration

Calculating the definite integral of a given real function f(x),
['r s
is a classic problem. For some simple integrands f (x), the indefinite integral
[fedx=F.  Fe=re)

can be obtained in closed form as an algebraic expression in x and well-
known transcendental functions of x. Then

[*f(x) dx = Fib) - Fla).

See Grobner and Hofreiter (1961) for a comprehensive collection of for-
mulas describing such indefinite integrals and many important definite
integrals.

As a rule, however, definite integrals are computed using discretization
methods which approximate the integral by finite sums corresponding to
some partition of the interval of integration [a, b] (“ numerical quadrature ™).
A typical representative of this class of methods is Simpson’s rule, which is
still the best-known and most widely used integration method. It is
described in Section 3.1, together with some other elementary integration
methods. Peano’s elegant and systematic representation of the error terms of
integration rules is described in Section 3.2.

A closer investigation of the trapezoidal sum in Section 3.3 reveals that its
deviation from the true value of the integral admits an asymptotic expansion
in terms of powers of the discretization step h. This expansion is the classical

125
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summation formula of Euler and Maclaurin. Asymptotic expansions of this
form are exploited in so-called “extrapolation methods,” which increase the
accuracy of a large class of discretization methods. An application of extra-
polation methods to integration (“ Romberg integration ”) is studied in Sec-
tion 3.4. The general scheme is described in Section 3.5.

A description of Gaussian integration rules follows in Section 3.6. The
chapter closes with remarks on the integration of functions with singulari-
ties. For a comprehensive treatment of integration, the reader is referred to
Davis and Rabinowitz (1975).

3.1 The Integration Formulas of Newton and Cotes

The integration formulas of Newton and Cotes are obtained if the integrand
is replaced by a suitable interpolating polynomial P(x) and if then {5 P(x) dx
is taken as an approximate value for [} f(x) dx. Consider a uniform partition
of the closed interval [a, b] given by
x; = a+ ih, i=0,...,n,
of step length h:=(b — a)/n, n > 0 integer, and let P, be the interpolating
polynomial of degree n or less with
P(x;)=fi=f(x;)) fori=0,1,...,n

By Lagrange’s interpolation formula (2.1.1.4),

n

c X — X
P(x)= ¥ fiL{x),  Lix)= X
i=0 k=0 Xi — X
k#i
or, introducing the new variable t such that x =a + ht,
"ot—k
Lx)=oit)=[] i—k
k=0
k#i
Integration gives
] n b
j P(x)dx=Y f | Lix)dx
a i=0 a
=h Y fi [ o) de
i=0 0
=h Y fi
i=0

Note that the coefficients or weights

n

o= fo o;(t) dt
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depend solely on n; in particular, they do not depend on the function fto be
integrated, nor on the boundaries a, b of the integral.
If n = 2 for instance, then

2t—11t-2 102, 1(8 12 1
ao—fo a——lf)_—_zdt_ifo(t —3t+2)dt—§(§ __2_+4)__

2p_0t-2 2 8 4
al—j‘ i—_—or_—idt———j. (t —2t)dt——(§—4)—§,

2t—0¢ 2 8 4 1
%= Txf‘d‘zf“‘”“ G‘ﬂ“y

and we obtain the following approximate value:

J Py(x) dx =g(fo +4f +12)

for the integral {3 f(x) dx. This is Simpson’s rule.
For any natural number n, the Newton-Cotes formulas

b n b—a

(L) [ PxVdx=h Y fo, fi=fla+ih), h=""2,

h

provide approximate values for {5 f(x) dx. The weights o;, i=0, 1,..., n,
have been tabulated. They are rational numbers with the property

(3.12)

o; = n.

i

t

This follows from (3.1.1) when applied to f(x):= 1, for which P,(x) = 1.
If s is a common denominator for the fractional weights o, that is, if the
numbers
0;'=sa;, i=01,...,n

are integers, then (3.1.1) becomes

(.13) [Pxyax=h 3 fu="

It can be shown [see Steffensen (1950)] that the approximation error may be
expressed as follows:

314)j x)dx—jf(x)dx—hv“-x-fw)(a:), £ e (a, b).

Here (a, b) denotes the open interval from a to b. The values of p and K
depend only on n but not on the integrand f.
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For n=1,2,...,6 we find the Newton-Cotes formulas given in the
following table. For larger n, some of the values o; become negative and the
corresponding formulas are unsuitable for numerical purposes, as cancella-
tions tend to occur in computing the sum (3.1.3).

n o; ns Error Name

1 11 2 R ) Trapezoidal rule
2 1 41 6 kg5 fH(E) Simpson’s rule

3 1 33 1 8  h® g ¢) 3/8-rule

4 7 3212 32 7 90 h7 385 16)(¢&) Milne’s rule

5 19 7550 5075 19 288 h? 158361 ©(&) _

6 41 216 27 272 27 216 41 840 h® 150 S ®(&) Weddle’s rule

Additional integration rules may be found by Hermite interpolation (see
Section 2.1.5) of the integrand f by a polynomial P € II, of degree n or less.
In the simplest case, a polynomial P € I1; with

P@)=f(a), Pl(a)=/"(a).
Pb)=f(),  P(b)=/"(b)
is substituted for the integrand f. The generalized Lagrange formula (2.1.5.3)
yields for P in the special case a=0, b= 1,
P(t)=fO)(e — 1)* + 2t¢ — 1] + (> — 26*(¢ - 1)]
+/O0)(t — 1) + £/ (1) (e — 1),

integration of which gives

[} P =470 + 510 + 5(0) ~ (1)

From this, we obtain by a simple variable transformation the following
integration rule for general a < b (h:=b — a):

(3.15) j ’ f(x) dx = M(h) ==g (fl@)+ 1)+ ;'—; (f'(a) = f'(b))

If fe€ C*a, b] then—using methods to be described in Section 3.2—the
approximation error of the above rule can be expressed as follows:
b hs

(3.1.6) M(h)— ( flx)dx= -5 f9E),  Ee(ab) h=(b—a)
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If the support abscissas x;,i =0, 1, ..., n, xo = @, x, = b are not equally
spaced, then interpolating the integrand f(x) will lead to different integra-
tion rules, among them the ones given by Gauss. These will be described in
Section 3.6.

The Newton-Cotes and related formulas are usually not applied to the
entire interval of integration [a, b], but are instead used in each one of a
collection of subintervals into which the interval [a, b] has been divided. The
full integral is then approximated by the sum of the approximations to the
subintegrals. The locally used integration rule is said to have been extended,
giving rise to a corresponding composite rule. We proceed to examine some
composite rules of this kind.

The trapezoidal rule (n = 1) provides the approximate value

3"

; E[f(xl) +f(x:+l)]

in the subinterval [x;, x;,,] of the partition x;=a + ih, i=0, 1, ..., N,
h:= (b — a)/N. For the entire interval [a, b], we obtain the approximation

(3.07)
T(hy='Y I,=h [fgi) +f@rhy+fa+2m)+ 1o -n+ O

which is the trapezoidal sum for step length h. In each subinterval [x;, x;,,]
the error

Xi+1

I — x dx=E @), € (x;, x;
i j f( ) 12f (él)’ én ( is |+l)’

Xi
is incurred, assuming f € C*[a, b]. Summing these individual error terms
gives
1 N-1

T(h) - f 1) dx—— f‘z’( )=o) T 1)

Since
1 N-1

min f &) <% Z SAAE) < max fA(E)

and f@®(x) is continuous, there exists ¢ € [min; éi, max; &) < (a, b) with
1 N-1

f(2)(§) = Z f(2)(€ )
Thus

b

)~ [ () dx =W, teab)

a

Upon reduction of the step length h (increase of N) the approximation error
approaches zero as fast as h%, so we have a method of order 2.
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If N is even, then Simpson’s rule may be applied to each subinterval
[x2i5 X2i41> X2i42), i =0, 1, ..., N/2 — 1, individually, yielding the approxi-
mation (h/3)(f(x2;) + 4f (x2:+1) + f(X2;+2)). Summing these N/2 approxi-
mations results in the composite version of Simpson’s rule,

S(h)=g[f(a)+4f(a+h)+2f(a+2h)+4f(a+3h)+"'

+2f(b—2h) + 4f (b — h) + f(D)],

for the entire interval. The error of S(h) is the sum of all N/2 individual
errors

b hs (N/2)—1 @ hWb—a?2 (N/2)-1 "
h — = — Fy== — —— — .
S = | ) dx=g5 3 ) =55y X SUE)
and we conclude, just as we did for the trapezoidal sum, that
b _
S0)~ [ 70 dx =" T HOQ),  Ee (a b

provided f € C*[a, b]. The method is therefore of order 4.
Extending the rule of integration M(h) in (3.1.5) has a remarkable effect:
when the approximations to the individual subintegrals

~Xit1

| f(x)dx fori=0,1,...,N—1
are added up, all the “interior” derivatives f'(x;), 0 < i < N, cancel. The
following approximation to the entire integral is obtained:
f f®))  h

v =h[LD +r@em+ 16 -m+ O (@ - e

= T + 25 /@)~ S ()]

This formula can be considered as a correction to the trapezoidal sum T(h).
It relates closely to the Euler-Maclaurin summation formula, which will be
discussed in Section 3.3 [see also Schoenberg (1969)]. The error formula
(3.1.6) for M(h) can be extended to an error formula for the composite rule
U(h) in the same fashion as before. Thus

(3.1.8) U(h) — J;bf(x) dx = — b_7—2—_0q R, Celab),

provided f € C*[a, b]. Comparing this error with that of the trapezoidal sum,
we note that the order of the method has been improved by 2 with a mini-
mum of additional effort, namely the computation of f'(a) and f'(b). If these
two boundary derivatives are known to agree, e.g. for periodic functions,
then the trapezoidal sum itself provides a method of order at least 4.
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Replacing f(a), f'(b) by difference quotients with an approximation error
of sufficiently high order, we obtain simple modifications [“end correc-
tions ”: see Henrici (1964)] of the trapezoidal sum which do not involve
derivatives but still lead to methods of orders higher than 2. The following
variant of the trapezoidal sum is already a method of order 3:

’T(h)zh(ls_zf(a)+%f(a+h)+f(a+2h)+...

+f(b—2h) +33f(b — h) + 5 (b))

For many additional integration methods and their systematic examination
see, for instance Davis and Rabinowitz (1975).

3.2 Peano’s Error Representation

All integration rules considered so far are of the form

(321) I(f)= :ﬁoakof(xko) + kmg:oau fia)+ - + :g:oak,,f""(x,m).

The integration error

(22) R()=1(1) - [ f(x) d

is a linear operator

R(af + Bg) = aR(f) + BR(g) forf,geV,a, Be R

on some suitable linear function space V. Examples are V = C"[a, b}, the
space of functions with continuous nth derivatives on the interval [a, b}, or
V =11, the space of all polynomials of degree no greater than n. The
following elegant integral representation of the error R(f) is a classical
result due to Peano:

(3:2.3) Theorem. Suppose R(P) = 0 holds for all polynomials P € I1,, that is,
every polynomial whose degree does not exceed n is integrated exactly. Then
for all functions f e C"*[a, b),

RU) =] 10K d,

a
where

K(t) ==ni!Rx[(x —n) (-t = {(()x -ty ﬁ ;ci :
and
R,[(x - t)"+]

denotes the error of (x — t), when the latter is considered as a function in x.
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The function K(¢) is called the Peano kernel of the operator R.
Before proving the theorem, we will discuss its application in the case of
Simpson’s rule

RU=3/ (-1 + 40 +37(+1) - | ) dx

We note that any polynomial P € Il, is integrated exactly. Indeed, let
Q € I1, be the polynomial with P(—1)= Q(—1), P(0)= Q(0), P(+1)=
Q(+1). Putting S(x):= P(x) — Q(x), we have R(P) = R(S). Since the degree
of S(x) is no greater then 3, and since S(x) has the three roots —1,0, +1, it
must be of the form S(x) = a(x*> — 1)x, and

R(P)=R(S)= —a _|'l x(x? — 1) dx = 0.

Thus Theorem (3.2.3) can be applied with n = 3. The Peano kernel becomes
K(t) = $RJ(x — 1)3]

1 .1
=6%—1—t)i+%(0—t)3++%(1—t)i—‘ (x — 1)} dx|.
-1

By definition of (x — t)?, we find that for t € [—1, 1]

’.1 (x—t)} dx= ‘|'l(x e dx=(1;£)f,

t -1 t 4
(-1-13=0 (1—-t)i=(01-1)p
] ifr>0,
(=0:=\_s irr<o,

The Peano kernel for Simpson’s rule in the interval [—1, +1] is then

AP+ 3) ifo<e<1

(3:24) K(r)= \K(~1) if —1<t<0.

ProOF OF THEOREM (3.2.3). Consider the Taylor expansion of f(x) at x = a:

(325) f(x)=f(a)+fa)x—a)+ -+ f/a) (x — a)' + rq(x).

n!

Its remainder term can be expressed in the form
1~ 1 b
nlx)= 5 | SO - o de= T |76 - o0r d.
Applying the linear operator R to (3.2.5) gives
1 b
(26 R() =R = R | 770~ 7 ).

since R(P)=0 for P e II,.
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In order to transform this representation of R(f) into the desired one, we
have to interchange the R, operator with the integration. To prove that this
interchange is legal, we show first that

d* | -® b . d*
n+1 n n+
(32.7) g ['., FeO@E)(x — o) dt] = Ja I ’(‘)ﬁ[(x —t),] ar
for 1 < k < n. For k < n this follows immediately from the fact that (x — t)’

is n— 1 times continuously differentiable. For k=n—1 we have in
particular

dn’ 1 b ‘1 b dn— 1
n n+ n
dxr1 ['a ) (x — ey dt} = .‘a A ”(t)dxn—l [(x —e)3]de
and therefore

;;;:1? ’J.bf("Jr De)x -ty dt] =n! J'bf(n+ O(t)(x — t), dt

= nt [ O 0)x - 1) .

The latter integral is differentiable as a function of x, since the integrand is
jointly continuous in x and t; hence

d‘i ddn l [ FEDE)x — o) dt”

= n! £+ D(x)(x — x) + n! ‘|' £ () dt

= t f‘"“’(t) Sl -]

Thus (3.2.7) holds also for k = n.

By (3.2.7), the differential operators
dt
dx*’

k=1,...,n

commute with integration. Because I(f) = I,(f) is a linear combination of
differential operators, it also commutes with integration.

Finally the continuity properties of the integrand f™*V(t)(x — t)} are
such that the following two integrations can be interchanged:

f I SO0 (e)x — ). de | dx = [ £ )

[ (x — ey dx] dt.

This then shows that the entire operator R, commutes with integration, and
we obtain the desired result

R(f)= ( FEDER((x — t).) dt. 0
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Note that Peano’s integral representation of the error is not restricted to
operators of the form (3.2.1). it holds for all operators R for which R,
commutes with integration.

For a surprisingly large class of integration rules, the Peano kernel K(t)
has constant sign on [a, b]. In this case, the mean-value theorem of integral
calculus gives

(3.2.8) R(f)=f"" 1) J'bK(t) dt for some ¢ € (a, b).

The above integral of K(t) does not depend on f, and can therefore be
determined by applying R, for instance, to the polynomial f (x):= x"*!. This
gives

R(xn+l)

(329) RU= 4

ferY(E)  for some ¢ € (a, b).

In the case of Simpson’s rule, K(t) >0 for —1<r<1 by (3.24). In
addition

4 !
R(x?) 1(%.1+%.0+%-1—‘ x4dX)=

1
4 24 L 9%’

so that we obtain for the error of Simpson’s formula

.1
VEDH30+3(0) - | S de=d5 @), Ee(ab)
In general, the Newton-Cotes formulas of degree n integrate without error
polynomials Pe 11, if n is odd, and PeIl,,, if n is even (see Exercise 2).
The Peano kernels for the Newton-Cotes formulas are of constant sign [see

for instance Steffensen (1950)], and (3.2.9) confirms the error estimates in
Section 3.1:

%:_(%i}%l f(n+1)(§) if n is odd,
R(f)=1 e c<la b}
T;;lgfz‘)? flnt 2)(5) if n is even.

Finally, we use (3.2.9) to prove the representation (3.1.6) of the error
of integration rule (3.1.5), which was based on cubic Hermite interpolation.
Here

RU) =5 (7@ +106) + 1 (7@~ B) ~ [ F()ds,  h=b—a

which vanishes for all polynomials P € I1; . For n = 3, we obtain the follow-
ing Peano kernel:
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K(t) = $R.((x — 1)3)

~sl5 @02 6= 0+ Fa- - 6= 09 - [x- 2 dx]

~clpo--So-o ~16- 1|
b — Pa— o).

Since K(t) <0 in the interval of integration [a, b}, (3.2.9) is applicable. We
find for a=0, b =1 that

R(x%)

=kl T () -h= ok

720

Unj

Thus

RUV= 53 [ 1906 - 0a—of = - L o, ce@n)

for fe C“[a, b}, which was to be shown.

3.3 The Euler-Maclaurin Summation Formula

The error formulas (3.1.6) and (3.1.8) are low-order instances of the famous

Euler-Maclaurin summation formula, which in its simplest form reads (for
ge C2m+2[0, 1])

(331) folg(t) gg +@ +i (512)1' (21—1)(0)_9(21—1)(1))

B,,, m
e o<ce

Here B, are the classical Bernoulli numbers
(332) B2 = %, B4 = —%’ 85 = 212_1 BS = _—316, ceey

whose general definition will be given below. Extending (3.3.1) to its compo-
site form in the same way as (3.1.6) was extended to (3.1.8), we obtain for
ge Cz'"+2[0, N]

g9(0)

L" oft) de =% g(N (N)

+g(1)+-+g(N—-1)+=

I OBV

Bom
e o<in
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Rearranging the terms of the above formula leads to the most frequently
presented form of the Euler-Maclaurin summation formula:

(3.3.3) 9(0)+gl)+ +g(1v—1)+“’(2

—l g(0) dt + z (2,), (¢°'" (N) — g 1(0))

B
+ s oy NP, 0<E<N.

(2m +2)!

For a general uniform partition x;,=a + ih,i=0, ..., N, xy = b, of the
interval [a, b], (3.3.3) becomes

(334) T(h)= ‘ 1) dt + z h2! (12312)!' (f®~Y(b) — @1 (q))

B, me 2y s
+ him*2 (2m2++;)! (b _ a)f(Z +2)(C),
a<é<b,

where T'(h) denotes the trapezoidal sum (3.1.7)
T(h) = h(f(") Ff@+ R+ S — )+ g”))

In this form, the Euler-Maclaurin summation formula expands the trapezoi-
dal sum T(h) in terms of the step length h = (b — a)/N, and herein lies its
importance for our purposes: the existence of such an expansion puts at
one’s disposal a wide arsenal of powerful general “ extrapolation methods,”
which will be discussed in subsequent sections.

PRroOF OF (3.3.1). We will use integration by parts and successively determine
polynomials B,(x), starting with B,(x) = x — 4, such that

[ at0)de = B,(0a(0)| [ B0

(3.3.9) | 1 B(t)g'(¢) dt = %Bz(t)g'(t)

1 1 .1
— = | Bat)g'(2) d,
0 2‘0

.'.l By_(t)}g* V(t) dt = %B,‘(t)g“‘_ (t)

1 1 .1

— 1 | Bdeg®™(e) dt,
0 0

where

(3.3.6) B, (x)=(k + 1)Bi(x), k=12, ...
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It is clear from (3.3.6) that each polynomial B,(x) is of degree k and that
its highest-order term has coefficient 1. Given By(x), the relation (3.3.6)
determines By, ,(x) up to an arbitrary additive constant. We now select
these constants so as to satisfy the additional conditions

(3.3.7) By1+1(0)= By 4(1)=0 for >0,
which determine the polynomials B,(x) uniquely. Indeed, if

By ((x)=xM"1 4y x4 b e X + ¢,
then, with integration constants ¢ and d,

aer, @+ 12

By a(x)=x m

Ca— X + - + (21 + )ex + d.
B, 1(0) = 0 requires d = 0, and B,,,,(1) = 0 determines c.
The polynomials

Bo(x)=1, By(x)=x-3%  By(x)=x*-x+3
By =¥ -3 +dn By = — 200 5T — .

are known as Bernoulli polynomials. Their constant terms B, = B,(0) are the
Bernoulli numbers (3.3.2). All Bernoulli numbers of odd index k > 1 vanish
because of (3.3.7).

The Bernoulli polynomials satisfy
(3.38) (=1)B,(1 — x) = By(x).

This follows from the fact that the polynomials (— 1)*B,(1 — x) satisfy the
same recursion, namely (3.3.6) and (3.3.7), as the Bernoulli polynomials
B,(x). Since they also start out the same, they must coincide.

The following relation—true for odd indices k > 1 by (3.3.7)—can now be
made general, since (3.3.8) establishes it for even k:

This gives
.1 1
(3.3.10) _L&mm=;¢7wuan—mﬂm»=0

We are now able to complete the expansion of

J: g(t) dt.

Combining the first 2m + 1 relations (3.3.5), observing

1
0

LB (0| = — 2 (g% (0) — g~ 1(1)
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for k > 1 by (3.3.9), and accounting for B,;,, = 0, we get

(3.3.11) ‘(ol g(t) dt = (2) + (21)

“ BZI - -
+ 2 @O =g W)+,

=1

where the error term r,, ., is given by the integral

(33.12) Fmit = 0 Bym.1(t)g?" " (t) dt

(2m + 1)'
We use integration by parts once more to transform the error term:
1 1 1

[ Bams s 20 dr = 575 (Bamal) = Bam 2™ 1)

1
T odm+2. ' (BZm+2(t) B,y 2 )g?m t 2t) dt.
The first term on the right-hand side vanishes again by (3.3.9). Thus

1 -1 +
(33.13)  rmix= @m +2)! "0 (B2m+2(t) = Bym+2)g?™ " 2(t) dt.

In order to complete the proof of (3.3.1), we need to show that
B+ 2(t) — Bam+ 2 does not change its sign between 0 and 1. We will show by
induction that

(3.3.14a) (=1Y"Bym-1(x)>0 for0<x <%,
(3.3.14b) (= 1)"(Bym(x) = Byn) >0 for0 <x <1,
(3.3.14c) (=1)"* 1By > 0.

Indeed, (3.3.14a) holds for m = 1. Suppose it holds for some m > 1. Then for
0<x<}

(F'*K (BZM(X) BZM) = (— l)m "‘XB2"" 1(t) dt > 0.

By (3.3.8), this extends to the other half of the unit interval, $ < x <1,
proving (3.3.14b) for this value of m. In view of (3.3.10), we have

(=11 By = (— 1" | (Bonlt) — Baw) dt >0,

which takes care of (3.3.14c). We must now prove (3.3.14a) for m + 1. Since
B,,.+ 1(x) vanishes for x = 0 by (3.3.7), and for x = } by (3.3.8), it cannot
change its sign without having an inflection point X between 0 and 3. But
then B,,_(X)=0, in violation of the induction hypothesis. The sign of
Bym+1(x)in 0 < x < ¥ is equal to the sign of its first derivative at zero, whose
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value is (2m + 1)B,,,(0) = (2m + 1)B,,,. The sign of the latter is (—1)"*! by
(3.3.14c).

Now for the final simplification of the error term (3.3.13). Since
Byp+2(X) — Bam+, does not change its sign in the interval of integration,
there exists &, 0 < ¢ < 1, such that

Tm+1 = WJ‘ (B2m+2(t) BZm+2) de - g(2m+2)(é)

From (3.3.10),

= — Bom+2 (2m+2)
Im+1 = (2m + 2)! (é)’

which completes the proof of (3.3.1). 0O

3.4 Integrating by Extrapolation

Let fe C>™*2[q, b] be a real function to be integrated over the interval [a, b].
Consider the expansion (3.3.4) of the trapezoidal sum T(h) of f in terms of
the step length h = (b — a)/n. It is of the form

(34.1)  T(h) =10+ 1 h* + 1,h* + -+ + 1, B®™ + a4 (R)RP" T2,

Here

o= [ s

is the integral to be calculated,

W= Gl UG SR, k=12 m

and

i) = 50y b= SCTER), < E= &) <h,

is the error coefficient. Since f2™* 2 is continuous by hypothesis in the closed
finite interval [a, b], there exists a bound L such that | f®™*?(x)| < L for
all x € [a, b]. Therefore:

(3.4.2). There exists a constant M,, ., such that
|°‘m+ 1(h) | <My
foralh=(b—a)nn=12,....
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Expansions of the form (3.4.1) are called asymptotic expansions in h if the
coefficients 7, kK < m, do not depend on h, and a,, , ;(h) satisfies (3.4.2). The
summation formula of Euler and Maclaurin is an example of an asymptotic
expansion. If all derivatives of f exist in [a, b], then by letting m — oo,
the right-hand side of (3.4.1) becomes an infinite series:

To+ T h* + 1yh* + oo,

This power series may diverge for any h # 0. Nevertheless, because of (3.4.2),
asymptotic expansions are capable of yielding for small 4 results which are
often sufficiently accurate for practical purposes [see, for instance, Erdélyi
(1956), Olver (1974)].

The above result (3.4.2) shows that the error term of the asymptotic
expansion (3.4.1) becomes small relative to the other terms of (3.4.1) as h
decreases. The expansion then behaves like a polynomial in h? which yields
the value 7, of the integral for h = 0. This suggests the following method for
finding 7,: For each step length h; in a sequence

ho=b—a, hy="0 m=op = to
ny n, n
where ny, n,, ..., n, are strictly increasing positive integers, determine the
corresponding trapezoidal sums

To = T(h;), i=0,1,..., m
Let

Tom(h) =00 + ah* + -+ + a, h*"
be the interpolating polynomial in h? with
Tmm(hi) = T(hl), i= 0, 1,...,m,

and take the “extrapolated” value T,,{0) as the approximation to the
desired integral 7, . This method of integration is known as Romberg integra-
tion, having been introduced by Romberg (1955) for the special sequence
h; = (b — a)/2". Tt has been closely examined by Bauer, Rutishauser, and
Stiefel (1963).

_ Neville’s interpolation algorithm is particularly well suited for calculating
T,um(0). For indices i, k with 1 < k <i < m, let T;(h) be the polynomial of
degree at most k in h? for which
Tulh)=T(h), j=i—ki—k+1,..,i
and let
Ty = T(0).
The recursion formula (2.1.2.7) becomes for x;.= h}:
n,k‘l - T;—l,k—l
hio |?

h,

L3

(343) Ty=T -1+
-1



3.4 Integrating by Extrapolation 141

It will be advantageous to arrange the intermediate values T} in the triangu-
lar tableau (2.1.2.4), where each element derives from its two left neighbors:

h(Z) T(ho) = Too
, T,
hi T(hl) = Tho T,
(3.4.4) T4 \’Taa
h3 | T(hy) = Ty \Taz/ :
\T“/' :

h% T(ha) = T;o

ExampLE. Calculating the integral
o1
[ % adr
‘0

by extrapolation over the step lengths ho = 1, h; = 4, h, = , we arrive at the follow-
ing tableau using (3.4.3) and 6-digit arithmetic (the fractions in parentheses indicate
the true values)

K =1 | Too=0.500 000 (= %)

Ty, = 0.187 500 (= )

W =1 | Tio=0265 625 (= §}) Ty, = 0.166 667 (= 3)
Ty; = 0.167 969 (= %)

Each entry T;, of the polynomial extrapolation tableau (3.4.4) represents
in fact a linear integration rule for step length h; = (b — a)/n;:
Tu=o0o f(a)+ay fla+h)+ - +o_y f(b—h)+ a, f(b)

Some of the rules, but not all, with i = k turn out to be of the Newton-Cotes
type (see Section 3.1).
For instance, if hy = hy /2 = (b — a)/2, then T, is Simpson’s rule. Indeed,

T = (b — k(@) + 31(6)
T =46 - 1@ +1(*52) + 1r0).

By (3.4.3),

and therefore

=46 - @+ 37(252) + 450).
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If we go one step further and put h, = h, /2, then T,, becomes Milne’s rule.
However, this pattern breaks down for hy = h, /2, since T;; is no longer a
Newton-Cotes formula (see Exercise 10).

In the above cases, T, and T;, are composite Simpson rules:

b—a
4
b—a
8

T = Gf@) +3f(@a+h)+3f(a+2h)+4f(a+ 3hy) + 4/ (b))

I3, =

Gf(@) +3f(@a+ h)+3f(a+2h)+ -+ 5/ (b))

Very roughly speaking, proceeding downward in tableau (3.4.4) corresponds
to extending integration rules, whereas proceeding to the right increases
their order.

The following sequences of step lengths are usually chosen for extrapola-
tion methods:

(3.4.5).

ho hi—y .
(a) h,=b — a, hl——2~,..., h; = 5 i=23 ...
(b) ho—_-b_a, hl=h—2o, h2=%0‘,..., hi=hi—2_2‘, i=3,4,....

The first sequence is characteristic of Romberg’s method [Romberg
(1955)]. The second has been proposed by Bulirsch (1964). It has the
advantage that the effort for computing T(h;) does not increase quite as
rapidly as for the Romberg sequence.

For the sequence (3.4.5a), half of the function values needed for calcu-
lating the trapezoidal sum T(h;, ) have been previously encounterered in
the calculation of T(h;), and their recalculation can be avoided. Clearly

T(hir 1) = 3T(h) + his o (f(@ + hir i) + fl@+ 3his ) + -+ f(b — hivy)).

Similar savings can be realized for the sequence (3.4.5b).

An ALGOL procedure which calculates the tableau (3.4.4) for given m and
the interval [, b] using the Romberg sequence (3.4.5a) is given below. To save
memory space, the tableau is built up by adding upward diagonals to the
bottom of the tableau. Only the lowest elements in each column need to be
stored for this purpose in the linear array {0 : m].

procedure romberg (a, b, f, m);
value g, b, m;

integer m;

real a, b;

real procedure f;

begin real h, s;
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integer i, k, n, q;
array 1[0 : m];
h=b-—a;n=1,
t[0]:=0.5 x h x (f(a) + f(b));
for k:=1 step 1 until m do
begin s:=0; h:==05 x h;n:=2 x n; q*=1;
for i:=1 step 2 until n — 1do
s=s+f(a+ixh)
t{k]:==0.5 x tfk — 1]+ s x h;
print (e{k]);
for i:==k — 1 step — 1 until O do
begin g :==q x 4;
il =i + 1] + (i + 1] - e[i])/(q — 1);
print (t[i])
end
end
end;

We emphasize that the above algorithm serves mainly as an illustration of
integration by extrapolation methods. As it stands, it is not well suited for
practical calculations. For one thing, one does not usually know ahead of
time how big the parameter m should be chosen in order to obtain the
desired accuracy. In practice, one calculates only a few (say seven) columns
of (3.4.4), and stops the calculation as soon as |T; ¢ — T4y, ¢| < &5, wheree
is a specified tolerance and s is a rough approximation to the integral

f | /()| dt.

Such an approximation s can be obtained concurrently with calculating one
of the trapezoidal sums T(h). A more general stopping rule will be
described, together with a numerical example, in Section 3.5. Furthermore,
the sequence (3.4.5b) of step lengths is to be preferred over (3.4.5a).
Finally, rational interpolation has been found to yield in most applications
considerably better results than polynomial interpolation. A program with
all these improvements can be found in Bulirsch and Stoer (1967).

When we apply rational interpolation (see Section 2.2), then the recursion
(2.2.3.8) replaces (2.1.2.7):

(3.4.6)
Li=Tix-, + Tik-s = 'lkl , 1<k<is<m
lg_] l Tix-1—Tio1,x-1 -1
Tix-1— Ti-1,x-2

The same triangular tableau arrangement is used as for polynomial extra-
polation: k is the column index, and the recursion (3.4.6) relates each tableau
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element to its left-hand neighbors. The meaning of T, , however, is now as
follows: The functions T;(h) are rational functions in h?,

= o Potpih®+ -+ ph
Tilh) = 2 2v
Qo+ g1 h* + -+ q.h

U+v=k, pu=voru=v-—1,
with the interpolation property
Talh)=T(h), j=i-ki—k+1,..,i
We then define
Iy= Tik(o),

and initiate the recursion (3.4.6) by putting T,,:=T(h)for i=0, 1, ..., m,
and T, _,=0for i=0,1,...,m— 1. The observed superiority of rational
extrapolation methods reflects the more flexible approximation properties of
rational functions (see Section 2.2.4).

In Section 3.5, we will illustrate how error estimates for extrapolation
methods can be obtained from asymptotic expansions like (3.4.1). Under
mild restrictions on the sequence of step lengths, it will follow that, for
polynomial extrapolation methods based on even asymptotic expansions,
the errors of T,, behave like h?, those of T;, like h7_, h?, and, in general, those
of T, like h?_, h?_,,, ... h? as i — co. For fixed k, consequently, the sequence
T,, i=k, k+1,..., approximates the integral like a method of order
2k + 2. For the sequence (3.4.5a) a stronger result has been found:

(347) T — l'bf(x) dx = (b — a)h?_ h? e (C 1 Bares fDE)
o AU TR T 2k 2)!

for a suitable ¢ € (a, b) and fe€ C***?[a, b] [see Bauer, Rutishauser, and

Stiefel (1963), Bulirsch (1964)].

3.5 About Extrapolation Methods

Some of the numerical integration methods discussed in this chapter (as, for
instance, the methods based on the formulas of Newton and Cotes) had a
common feature: they utilized function information only on a discrete set of
points whose distance—and consequently the coarseness of the sample—was
governed by a “step length.” To each such step length h # 0 corresponded
an approximate result T(h), which furthermore admitted an asymptotic ex-
pansion in powers of h. Analogous discretization methods are available for
many other problems, of which the numerical integration of functions is but
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one instance. In all these cases, the asymptotic expansion of the result T(h) is
of the form

(351) T(h)=r1o+ 1 h" + 1,2 + - + 1" + W™ 1at,, . 4 (h),
0<y <2< <Vm+1s

where the exponents y; need not be integers. The coefficients 7; are indepen-
dent of h, the function a,, . ;(h) is bounded for h — 0, and 7, = lim,_,, T(h)is
the exact solution of the problem at hand.

Consider, for example, numerical differentiation. For h # 0, the central
difference quotient

Ty =T+ f')_z"Tf (x — k)

is an approximation to f'(x). For functions fe C*™*3[x — a, x + 4] and
|h| < |al, Taylor’s theorem gives
’ 2 h2m+3

Tl = 35 )+ ) + 57 7700+ + 3 (77960 + o)

h2m+3

~FO+ AR = 310 4 e ) + o)

=10+ 1 h* + - + 1, ™ + B2 2, (R),

where 14 = f'(x), T = fP**V(x)/(2k + 1)! for k=1,2,...,m+ 1, and
Ut 1(B) = Tm+1 + 0(1).
Using the one-sided difference quotient

SRRCELENC

leads to the asymptotic expansion
T(h)= 1o + T h + 1,h* + - + T B + K" H1ph 1 + 0(1))
with

S4()
k)

We will see later that the central difference quotient is a better approxi-
mation to base an extrapolation method on, as far as convergence is con-
cerned, because its asymptotic expansion contains only even powers of the
step length h. Other important examples of discretization methods which
lead to such asymptotic expansions are those for the solution of ordinary
differential equations (see Sections 7.2.3 and 7.2.12).

In order to derive an extrapolation method for a given discretization
method, we select a sequence of step lengths

F={h0xh1,h2,-..}, h0>h1>h2>...>0’

k=012, ... m+ 1
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and calculate the corresponding approximate solutions T(h;),i=0,1,2, ....
For i = k, we introduce the “polynomials”

Tulh) = bo + byh"* + -+ + b h™,
for which
Talh)=Th), j=i—-ki-k+1,..,i
and we consider the values
T = Tu(0)

as approximations to the desired value 7,. Rational functions T (h) are
frequently preferred over polynomials. Also the exponents y, need not be
integer [see Bulirsch and Stoer (1964)].

For tlle following discussion of the discretization errors, we will assume
that the T;,(h) are polynomials with exponents of the form y, = ky. Romberg
integration (see Section 3.4) is a special case with y = 2. We will use the
abbreviations

z:=h, z;i'==hi, j=0,1,...,m.
Applying Lagrange’s interpolation formula (2.1.1.3) to the polynomial
Tik(h)= Pik(z)= bo + blz + b222 + -+ bkzk
yields for z =0

i i

Ty = Py(0) = Z Cg}Pik(zj) = Z Cii}T(hj)

j=i—k j=i-k
with
Then
' 1 ift=0,
(3.5.2) i d)zi=.0 ifr=12, ...,k

j=i-k

(—l)kZ,-_kZ,--k+‘ ...Zi ifT=k+ 1
Proor. The Lagrange coefficients c{’} depend only on the support abscissas z;
and not on the functions to be interpolated. Selecting the polynomials z/,
1=0,1, ..., k, Lagrange’s interpolation formula gives therefore
=Y 2 J] Z_z”, 1=0,..., k.

j=i-k a#j Zj T Zg
o=i—k

For z = 0, all but the last one of the relations (3.5.2) follow.
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To prove the last of the relations (3.5.2), we note that

(3.53) Fi= ¥ A1 ] (i:z")+ I - z)
j=i-k atj \2a — 2 a=i—k
a=i—k

Indeed, since the coefficients of z**! are the same on both sides, the differ-
ence polynomial has degree at most k. Since it vanishes at the k + 1 points
z4,0 =1i—k, ..., i, it vanishes identically, and (3.5.3) holds. Letting z = 0 in
(3.5.3) completes the proof of (3.5.2). a

(3.5.2) can be sharpened for sequences h; for which there exists a constant
b such that

h,
9l < b <1 forallj.
h;

In this case, there exists a constant C, which depends only on b and for
which

(35.4) Y AT < Coziciziogyy ..z,
j=i-k

We prove (3.5.4) only for the special case of geometric sequences {h;} with

hy=hob, O<b<l, j=0,1,...

For the general case see Bulirsch and Stoer (1964). It suffices to prove (3.5.4)
for i = k. With the abbreviation §:=b" we have

25 = (hob)" = 267,

In view of (3.5.2), the polynomial

k

Piz)= ¥

i=0
satisfies

x . x 1 fort=0
P.(6%) = git — -t (), _ ’
M) = 3o =z jgoc"’z’ 0 fort=1,2...k

so that P,(z) has the k different roots 6%, =1, ..., k. Since P,(1) = 1, the
polynomial P, must have the form

[N

Pk(z)=H mld

=1 1—

X
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The coefficients of P, alternate in sign, so that

k k
et = Y |y = A0 )]

ot + 0

4015
PR 1+6
=% iy

= C(0)zo2y --- 2z

with

k 1]
(3.5.5) a=co=I1 i 1+0

This proves (3.5.4) for the special case of geometrically increasing step
lengths h;.
We are now able to make use of the asymptotic expansion (3.5.1) which
gives for k <m
T;k = Z C(kl.l) T(hj)
j=i—k
= Y dlito+1z;+ 1,2} + -+ u 2+ 2 (1, + O(h))),
ji=i—k
and fork=m
Ty = Z cf,';’,—[‘ro%— T,z + Tzzj2 + o+ T2+ Z?H“mﬂ(hj)]-
j=i.—m '
By (3.5.2) and (3.5.4),
(3.56) Tu=1to+ (—1)zi_xzi x4y - zi(Tesy + O(h;_,)) fork <m,
and

|T1:m - TOl < Mm+1CmZi—mZi—m+l e Zy

if |+ 1(hj)| < M,,4, for j = 0 [see (3.4.2)]. Consequently, for fixed k and
i — o0,
T — 10 = O(z¥2 1) = O(h{ 5 1).

In other words, the elements T, of the (k + 1)st column of the tableau (3.4.4)
converge to 7, like a method of order (k + 1)y. Note that the increase of the
order of convergence from column to column which can be achieved by
extrapolation methods is equal to y: y =2 is twice as good as y = 1. This
explains the preference for discretization methods whose corresponding
asymptotic expansions contain only even powers of h, e.g., the asymptotic
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expansion of the trapezoidal sum (3.4.1) or the central difference quotient
discussed in this section.

The formula (3.5.6) shows furthermore that the sign of the error remains
constant for fixed k < mand sufficiently large i provided 7, , ; # 0. Advantage
can be taken of this fact in the many cases in which

T; — | _H 1
35.7 g-l, itLk T 0] A TR pret ) o
( ) 0 |T;k - TOI h?—k =
If we put

Ui =2T;s 1 — Tie
then

Ui — 0= 2(Tis 1.4 — To) — (Tix — 7o)
For s:=sign(T;, 1, — To) = sign(T; , — 7o), we have
sS(Uia = 10) = 2| Toks1 — To| = | T — 7] ® = | Ty — 70} <O.
Thus U, converges monotonically to 7, for i » oo at roughly the same rate
as T but from the opposite direction, so that eventually T;, and U, will

include the limit 7, between them. This observation yields a convenient
stopping criterion.

ExaMPLE. The exact value of the integral

n2
f 5(e™ — 2) " 'e?* cos x dx
‘0

is 1. Using the polynomial extrapolation method of Romberg, and carrying 12 digits,
we obtain for T, Uy, 0 <i <6, 0 <k <3, the values given in the following table.

Tio

T,

I,

T

(= NV IRV S ]

0.185 755 068 924
0.724 727 335 089
0.925 565 035 158
0.981 021 630 069
0.995 232 017 388
0.998 806 537 974
0.999 701 542 775

0.904 384 757 145
0.992 510 935 182
0.999 507 161 706
0.999 968 813 161
0.999 998 044 836
0.999 999 877 709

0.998 386 013 717
0.999 973 576 808
0.999 999 589 925
0.999 999 993 614
0.999 999 999 901

0.999 998 776 222
1.000 000 002 83
1.000 000 000 02
1.000 000 000 00

~.

Uio

Uiy

Ui

Uis

[~ NV ISRV S a4

1.263 699 601 26
1.126 402 735 23
1.036 478 224 98
1.009 442 404 71
1.002 381 058 56
1.000 596 547 58
1.000 149 217 14

1.080 637 113 22
1.006 503 388 23
1.000 430 464 62
1.000 027 276 51
1.000 001 710 58
1.000 000 107 00

1.001 561 139 90
1.000 025 603 04
1.000 000 397 30
1.000 000 006 19
1.000 000 000 09

1.000 001 229 44
0.999 999 997 211
0.999 999 999 978
1.000 000 000 00
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3.6 Gaussian Integration Methods

In this section, we broaden the scope of our examination by considering
integrals of the form

b
I(f)=| o(x)f(x)dx,
where w(x) is a given nonnegative weight function on the interval [a, b]. Also,
the interval [a, b] may be infinite, e.g., [0, + o] or [— o0, + o0]. The weight
function must meet the following requirements:

(3.6.1).

(@) w(x)= 0 is measurable on the finite or infinite interval [a, b].

(b) All moments p, = [} x*w(x) dx, k =0, 1, ..., exist and are finite.

(c) For polynomials s(x) which are nonnegative on [a, b}, {5 w(x)s(x) dx =0
implies s(x) = 0.

The conditions (3.6.1) are met, for instance, if w(x)is positive and contin-
uous on a finite interval [a, b]. Condition (3.6.1c) is equivalent to
{5 w(x) dx > 0 (see Exercise 14).

We will again examine integration rules of the type

(3.6.2) I(f)= ,:le.- f(x)

The Newton-Cotes formulas (see Section 3.1) are of this form, but the
abscissas x; were required to form a uniform partition of the interval [a, b].
In this section, we relax this restriction and try to choose the x; as well as the
w; so as to maximize the order of the integration method, that is, to maxi-
mize the degree for which all polynomials are exactly integrated by (3.6.2).
We will see that this is possible and leads to a class of well-defined so-called
Gaussian integration rules or Gaussian quadrature formulas [see for instance
Stroud and Secrest (1966)]. These Gaussian integration rules will be shown
to be unique and of order 2n — 1. Alsow; > 0anda < x; <bfori=1,..., n
In order to establish these results and to determine the exact form of

the Gaussian integration rules, we need some basic facts about orthogonal
polynomials.

We introduce the notation
O:={p|px)=x+a, X'+ +a}

for the set of normed real polynomials of degree j, and, as before, we denote
by

I1; == {p| degree(p) < j}
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the linear space of all polynomials whose degree does not exceed j. In addi-
tion, we define the scalar product

()= ox) (<l
on the linear space I*[a, b] of all functions for which the integral

(1) = [ oY d
is well defined and finite. The functions f; g € I*[a, b] are called orthogonal if
(f, g9) = 0. The following theorem establishes the existence of a sequence of

mutually orthogonal polynomials, the system of orthogonal polynomials as-
sociated with the weight function w(x).

(3.6.3) Theorem. There exist polynomials p;e I1;,j =0, 1, 2, ..., such that

(3.6.4) (Pi,p)=0 fori#k.
These polynomials are uniquely defined by the recursions
(3.6.5a) Po(x) =1,

(3.6.5b) Piv1(X) = (x = 8i4 1 )Pi(x) — ¥2i1Pi-1(x) for i=0,
where p_,(x) = 0 and®

(3.6.6a) 0ivy = (xpi, P)/p:i, p;) fori=0,
2 .- (0 fori=0,
(36.6b) Ties \(pis P)/(Pi-1> Picy) foriz 1.

ProorF. The polynomials can be constructed recursively by a technique
known as Gram-Schmidt orthogonalization. Clearly py(x) = 1. Suppose then,
as an induction hypothesis, that all orthogonal polynomials with the above
properties have been constructed for j <i and have been shown to be
unique. We proceced to show that there exists a unique polynomial
pi+1 € M,y with

(36.7) (Pi+1> P})=0 forj<i,

and that this polynomial satisfies (3.6.5b). Any polynomial p;, , € I, , can
be written uniquely in the form

Pis1(X) = (x = 0i4 1 )PiX) + €im 1 Pio1(X) + €im2Pi—2(X) + - + €oPo(x),

! xp; denotes the polynomial with values xp;(x) for all x.
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because its leading coefficient and those of the polynomials p;, j < i, have
value 1. Since (p;, p,) = Oforall j, k < i with j # k, (3.6.7) holds if and only if

(3-6-83) (Pi+ 15 Pi) = (xPi, P.') — 0is 1(Pi, Pi) =0,
(3.68b) (pis1, Pj‘1) = (xPj~1, p) + chl(pjvl, Pj—x) =0 forj<i

The condition (3.6.1c)}—with p? and p?_,, respectively, in the role of the
nonnegative polynomial s—rules out (p;, p;)=0 and (p;_,, pj—;) = 0 for
1 <j < i. Therefore, the equations (3.6.8) can be solved uniquely. (3.6.8a)
gives (3.6.6a). By the induction hypothesis,

pi(x) = (x = 8,)p;- 1(x) = ¥ip;-2(x)

for j < i. From this, by solving for xp;_,(x), we have (xp;_,, p;) = (p;, p;) for
Jj <, so that

e = pp) =y forj=i
YT T piiepie) L0 forj<i
in view of (3.6.8). Thus (3.6.5b) has been established for i + 1. O

Every polynomial p € I, is clearly representable as a linear combination
of the orthogonal polynomials p;, i < k. We thus have:

(3.6.9) Corollary. (p, p,) =0 forallpeIl,_,.

(3.6.10) Theorem. The roots x;,i = 1, ..., n, of p, are real and simple. They all
lie in the open interval (a, b).

Proor. Consider those roots of p, which lie in (a, b) and which are of odd
multiplicity, that is, at which p, changes sign:

a<x < -<x<b

The polynomial

q(x)=

-~

(x—x)el]
1

i

is such that the polynomial p,(x)q(x) does not change sign in [a, b], so that
b
(Pr ) = | @(x)pu(x)a(x) dx # 0

by (3.6.1c). Thus degree(q) = I = n must hold, as otherwise (p,, q) =0 by
Corollary (3.6.9). O
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Next we have the

(3.6.11) Theorem. The n x n matrix

Po(t:) .- Poltn)
a=| z
Pa-1(t1) - Pa-1(ts)
is nonsingular for mutually distinct arguments t;,i=1, ..., n.

PrOOF. Assume A is singular. Then there is a row vector
c"=(co,--» €a_1) # 0 with ¢4 = 0. The polynomial

=Y o)

with degree(p) < n, has the n distinct roots ¢, ..., t, and must vanish iden-
tically. Let [ be the largest index with ¢; # 0. Then

1 -1
px)= —— z ¢ pi(x).
Cii=o
This is a contradiction, since the polynomial to the right has a lower degree
than p, e I1,. d

Theorem (3.6.11) shows that the interpolation problem of finding a func-
tion of the form

p(x) = ':Z:Cipi(x)

with p(t;) = f;, i =1, ..., nis always uniquely solvable. The condition of the
theorem is known as the Haar condition. Any sequence of functions
Po»> P1, --- Which satisfy the Haar condition is said to form a Chebyshev
system. Theorem (3.6.11) states that sequences of orthogonal polynomials
are Chebyshev systems.

Now we arrive at the main result of this section.

(3.6.12) Theorem.

(a) Let x, ..., x, be the roots of the nth orthogonal polynomial p,(x), and let
Wy, ..., w, be the solution of the (nonsingular) system of equations

= ifk=0
36.13 . — ’(po, Po) i X
(36.13) Lpdxdwe= ifk=12 ..., n—1
Thenw; >0fori=1,2,..., n and

b n

(3.6.14) [ w(x)p(x) dx = ;1 w; p(x;)
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holds for all polynomials p € I1,,_,. The positive numbers w; are called
“weights.”

(b) Conversely, if the numbers w;, x;, i = 1, ..., n, are such that (3.6.14) holds

for all p e I1,,_,, then the x; are the roots of p, and the weights w; satisfy
(3.6.13).

(c) It is not possible to find numbers x;, w;, i =1, ..., n, such that (3.6.14)
holds for all polynomials p € I1,,.

Proor. By Theorem (3.6.10), the roots x;, i =1, ..., n, of p, are real and
mutually distinct numbers in the open interval (a, b). The matrix

[Po(xl) Po(xn)]
(3.6.15) A= . :

pn—l.(xl) pn—;(xn)

is nonsingular by Theorem (3.6.11), so that the system of equations (3.6.13)
has a unique solution.

Consider an arbitrary polynomial p € I1,,_,. It can be written in the
form

(3.6.16) p(x) = pa(x)a(x) + r(x),

where g, r are polynomials in I, _;, which we can express as linear combina-
tions of orthogonal polynomials

= Tanld =T Al

Since po(x) = 1, it follows from (3.6.16) and Corollary (3.6.9) that
b

_" w(x)p(x) dx = (p,, q) + (r, Po) = BolPo. Po)

On the other hand, by (3.6.16) [since p,(x;) = 0] and by (3.6.13),

n n n—1 n
__Zl w;p(x;) = Zi wir(x;) = kZO B ( Zi wipk(xi)> = Bo(Po> Po)-
Thus (3.6.14) is satisfied.
We observe that

(3.6.17). If w;, x;,i =1, ..., n, are such that (3.6.14) holds for all polynomials
pell,,_,, thenw;>0fori=1,...,n

This is readily verified by applying (3.6.14) to the polynomials

pi(x) := hl:ll (x—xp)?ely,_5 j=1,...,n
h#j
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and noting that

b n n
0 < | w(x)p(x)dx = Y wibyx;) = w; [ (x; — x)?
‘a i=1 h=1
h#j
by (3.6.1c). This completes the proof of (3.6.12a).

Assume that w;, x;, i = 1, ..., n, are such that (3.6.14) even holds for all
polynomials p € I1,,. Then

p(x):= fl(x —x;)? e,

i=1

contradicts this claim, since by (3.6.1c)

0<' x)px)dx—pr(x)—

This proves (3.6.12c)

To prove (3.6.12b), suppose that w;, x;, i = 1, ..., n are such that (3.6.14)
holds for all p € II,, _ ;. Note that the abscissas x; must be mutually distinct,
since otherwise we could formulate the same integration rule using only
n — 1 of the abscissas x;, contradicting (3.6.12c).

Applying (3.6.14) to the orthogonal polynomials p = p,, k=0, ..., n — 1,
themselves, we find

|(Po» Po) il k=0

V;Wipk(xi) = ‘a o(x)p(x) dx = (px, po) = | 0 ifk=1,....n— 1.

In other words, the weights w; must satisfy (3.6.13).
Applying (3.6.14) to p(x) := p(x)p,(x), k =0, ..., n — 1, gives by (3.6.9)

0= (plu pn) = Zwipn(xi)pk(xi)’ k= Oa s, — 1
i=1

In other words, the vector ¢ :=(w;p,(x,), ..., W, Pa(x,))" solves the homo-
geneous system of equations Ac =0 with A the matrix (3.6.15). Since the
abscissas x;, i = 1, ..., n, are mutually distinct, the matrix 4 is nonsingular
by Theorem (3.6.11). Therefore ¢ = 0 and w; p,(x;) =0fori=1, ..., n. Since
w; > 0 by (3.6.17), we have p,(x;) = 0,i = 1, ..., n. This completes the proof
of (3.6.12b). O

For the most common weight function w(x) = 1 and the interval [ -1, 1],

the results of Theorem (3.6.12) are due to Gauss. The corresponding ortho-
gonal polynomials are (see Exercise 16)

(36.18) Pu(x):= (2k)'dxk(x 1Y, k=0,1,...,

Indeed, p, € [T, and integration by parts establishes (p;, p) =0 for i # k.
Up to a factor, the polynomials (3.6.18) are the Legendre polynomials. In the
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following table we give some values for w;, x; in this important special case.
For further values see the National Bureau of Standard’s Handbook of
Mathematical Functions [Abramowitz and Stegun (1964)].

n w; X;

l W, = 2 X, = 0

2 w,=w, =1 x; = —x; = 0577 350 2692...

3 W, =Wy =3 X3= —x; = 0.774 596 6692...
Wy = % x; =0

4 w, = w, = 0.347 854 8451. .. X = —x,; = 0.861 136 3116...
w, = wy = 0.652 145 1549... X3 = —x,; = 0.339 981 0436...

5 w, = ws = 0.236 926 8851... xs = —x; = 0.906 179 8459...
w, = w, = 0.478 628 6705... X, = —x; = 0.538 469 3101...
wy = 3% = 0.563 888 8889... x3=0

Other important cases which lead to Gaussian integration rules are listed
in the following table:

[a, b] w(x) Orthogonal polynomials
[—-11] (1—x3)"12 T,(x), Chebyshev polynomials
[0, ) e~ L,(x), Laguerre polynomials
(— o0, 0] e H,(x), Hermite polynomials

We have characterized the quantities w;, x; which enter the Gaussian inte-
gration rules for given weight functions, but we have yet to discuss methods
for their actual calculation. We will examine this problem under the assump-
tion that the coefficients §;, 7; of the recursion (3.6.5) are given. Golub and
Welsch (1969) and Gautschi (1968, 1970) discuss the much harder problem of
finding the coefficients ¢;, y;.

The theory of orthogonal polynomials ties in with the theory of real
tridiagonal matrices

(3.6.19) J.
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and their principal submatrices
[ 6, Y2 ]

12

C
L Vi 0

Such matrices will be studied in Sections 5.5, 5.6 and 6.6.1. In section 5.5 it
will be seen that the characteristic polynomials p; of J; satisfy the recursions
(3.6.5) with the matrix elements J;, y; as the coefficients. Therefore, p, is the
characteristic polynomial of the tridiagonal matrix J,. Consequently we
have

(3.6.20) Theorem. The roots x;, i = 1, ..., n, of the nth orthogonal polynomial
p» are the eigenvalues of the tridiagonal matrix J, in (3.6.19).

The bisection method of Section 5.6, the QR method of section 6.6.6, and
others are available to calculate the eigenvalues of these tridiagonal systems.
With respect to the weights w;, we have [Szegd (1959), Golub and Welsch
(1969)].

(3.6.21) Theorem. Let v == (v, ..., v?)" be an eigenvector of J,, (3.6.19) for
the eigenvalue x;, J, v = x;v"". Suppose v'" is scaled in such a way that

b
v®To = (pg, po) = ' (x) dx.

Then the weights are given by

w,=0P)? i=1..,n
PrOOF. We verify that the vector

19 = (poPo(Xi), P1P1(X:)s -5 Pae 1 Pa—1(x:))T
where—note that y; # 0 by (3.6.6b)—
q 1 for j =0,
) 1

- ‘— forj=1,...,n—-1
'}'2 ...'}'j+1

Pj

is an eigenvector of J, for the eigenvalue x;: J, 7" = x; 5?. By (3.6.5), for
any x,

01P0Po(x) + 121 P1(X) = 61 po(x) + p1(x) = xpo(x) = xpopo(x).
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Forj=2,..., n— 1, similarly,
YiPj—2Pj-2(X) + ;05— 1 Pj—1(X) + V41 p;Pi(x)

= pi-alyipi-2(x) + 6;p;- 1 (x) + pi(x)]

= Xpj-1Pj- 1(x)’
and finally,

Pn- 1[7;2.Pn—2 + 5npn— 1()()] = XPp-1Pn- l(x) — Pn-1 pn(x)’
so that
VnPr—2Pn—2(X:) + OnPuzy Pa-1(Xi) = XiPp_1 Pnt (X;)

holds, provided p,(x;) = 0.
Since p; #0,j=0, ..., n — 1, the system of equations (3.6.13) for w; is
equivalent to

(3.6.22) @, ..., Mw = (Po> Poler,
with w=(wy,...,w), e, =(1,0,...,0).

Eigenvectors of symmetric matrices for distinct eigenvalues are orthogonal.
Therefore, multiplying (3.6.22) by v®” from the left yields

(75w, = (7o P
Since po = 1 and py(x) = 1, we have !’ = 1. Thus
(3.6.23) @78 )w; = (po, Po)-

Using again the fact that 3 =1, we find v{’3® = v'?, and multiplying
(3.6.23) by (v{")* gives

(OTv)w; = (v)*(po, Po)-

Since v®@Tv = (p,, po) by hypothesis, we obtain w; = (v{)2. 0

If the QR-method is employed for determining the eigenvalues of J,, then
the calculation of the first components v} of the eigenvectors v is readily
included in that algorithm: calculating the abscissas x; and the weights w;
can be done concurrently [Golub and Welsch (1969)).

Finally, we will estimate the error of Gaussian integration:

(3.6.24) Theorem. If f € C*"[a, b], then

b n (2n)
[t - Swire) =25 6.

for some & € (a, b).
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Proor. Consider the solution hell,,_; of the Hermite interpolation
problem (see Section 2.1.5)

h(x;)=f(x;), W(x)=f"(x) i=1..,n

Since degree(h) < 2n,
b n n
| w(x)h(x)dx= Y wh(x)= Y w f(x)
‘a i=1 i=1
by Theorem (3.6.12). Therefore the error term has the integral representation

J w(x)f (x) dx — wa = [ 0()(f(x) — h(x)) dx.

By Theorem (2.1.5.10), and since the x; are the roots of p,(x) € f,,

f(2n)(c) f‘(ln) C) 2( )
(2n)! (2n)!

for some { = {(x) in the interval I(x,, ..., x,, x) spanned by x,, ..., X,, x.
Next,

f(x) = h(x) =

(x—x ) ... (x=x, )2 =

SEx)) _ fx) — hix)
(2n)! pa(x)

is continuous on [a, b] so that the mean-value theorem of integral calculus
applies:

[0~ b = [ o) eerie) dx =g, )

for some ¢ € (a, b). O

Comparing the various integration rules (Newton-Cotes formulas, extra-
polation methods, Gaussian integration), we find that, computational efforts
being equal, Gaussian integration yields the most accurate results. If only
one knew ahead of time how to chose n so as to achieve specified accuracy
for any given integral, then Gaussian integration would be clearly superior
to other methods. Unfortunately, it is frequently not possible to use the error
formula (3.6.24) for this purpose, because the 2nth derivative is difficult to
estimate. For these reasons, one will usually apply Gaussian integration for
increasing values of n until successive approximate values agree within the
specified accuracy. Since the function values which had been calculated for n
cannot be used for n + 1 (at least not in the classical case w(x)= 1), the
apparent advantages of Gauss integration as compared with extrapolation
methods are soon lost. There have been attempts to remedy this situation

[e.g- Kronrod (1965)]. A collection of Fortran programs is given in Piessens
et al. (1983).
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3.7 Integrals with Singularities

Examining some frequently used integration methods in this chapter, we
found that their application to a given integral

b
| f(x)dx, a, b finite

was justified provided the integrand f(x) was sufficiently often differentiable
in [a, b]. For many practical problems, however, the function f(x) turns out
to be not differentiable at the end points of [a, b], or at some isolated points
in its interior. In what follows, we suggest several ways of dealing with this
and related situations.

(1) f(x) is sufficiently often differentiable on the closed subintervals of a
partition a = a, < a, < < a,,,; = b. Putting fi(x) :=f(x) on [a;, a;+,],
and defining the derivatives of f;(x) at a; as the one-sided right derivative and
at g;, , as the one-sided left derivative, we find that standard methods can be
applied to integrate the functions f(x) separately. Finally,

_‘;bf(x)dx=i o

i=1"4

Si{x) dx.

(2) Suppose there is a point X € [a, b] for which not even one-sided deri-
vatives of f(x) exist. For instance, the function f (x) = /x sin x is such that
f'(x) will not be continuous for any choice of the value f'(0). Nevertheless,
the variable transformation ¢t := \/; yields

b b
| ﬁsinxdx= | 2t% sin 2 dt
‘0 ‘0

and leads to an integral with an integrand which is now arbitrarily often
differentiable in [0, \/b).

(3) Another way to deal with the previously discussed difficulty is to split
the integral:

b . .b
‘\/;sinxdx=‘a\/;sinxdx+'\/;sinxdx, e> 0.
o Y 2

The second integrand is arbitrarily often differentiable. The first integrand
can be developed into a uniformly convergent series on [0, ¢] so that integra-
tion and summation can be interchanged:

£ P
in x d — = +-)dx=
-‘oﬁsm e ‘ \/_(x B ) = Z( (2v @v+1)1Q2v +5/2)
For sufficiently small ¢, only few of the series need be considered. The
difficulty lies in the choice of ¢: if ¢ is selected too small, then the proximity of
the singularity at x = 0 causes the speed of convergence to deteriorate when
we calculate the remaining integral.

2v+5/2
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(4) Sometimes it is possible to subtract from the integrand f (x) a function
whose indefinite integral is known, and which has the same singularities as
f(x). For the above example, x\/; is such a function:

b
‘ \/:c sin x dx
o

b b .b
= | VX in x — x) dx + | x/xdx=| /x(sin x — x) dx + 2b5/2,
‘0 ‘0 ‘0

The new integrand has a continuous third derivative and is therefore better
amenable to standard integration methods. In order to avoid cancellation
when calculating the difference sin x — x for small x, it is recommended to
evaluate the power series

. 1 1 & (=1y
— — 3= _ - 2+... = 3 _\ 2v'
sin x — x x(3! 5!x + ) xv;o (2v+3)!x

(5) For certain types of singularities, as in the case of

b
I=‘ x*f (x) dx, O<a<l,
0

with f(x) sufficiently often differentiable on [0, b], the trapezoidal sum T'(h)
does not have an asymptotic expansion of the form (3.4.1), but rather of the
more general form (3.5.1):

T(h) ~ to + Ty + T3 -,
where

d={1+62,2+0,44+a266+a,..}

[see Bulirsch (1964)]. Suitable step-length sequences for extrapolation
methods in this case are discussed in Bulirsch and Stoer (1964).
(6) Often the following scheme works surprisingly well: if the integrand of

b
I= ‘ f(x)dx
is not, or not sufficiently often, differentiable for x = a, put

b—a
aj:=a+ ] s j=1,2,...,

in effect partitioning the half-open interval (a, b] into infinitely many subin-
tervals over which to integrate separately:

aj

Ij==f f(x)dx,

Xj+1

using standard methods. Then
I=11+12+13+"'
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The convergence of this sequence can often be accelerated using, for
instance, Aitken’s A? method (see Section 5.10). Obviously, this scheme can
be adapted to calculating improper integrals

a

j f(x) dx.

(7) The range of improper integrals can be made finite by suitable var-
iable transformations. For x = 1/t we have, for instance,

1" reyax =] 4 f(l) dr.
AN lo 27\t

If the new integrand is singular at 0, then one of the above approaches may
be tried. Note that the Gaussian integration rules based on Laguerre and
Hermite polynomials (Section 3.6) apply directly to improper integrals of
the forms

a L+

" rxyax, | f)

*0 ‘-

respectively.

EXERCISES FOR CHAPTER 3

1. Let a < xg < x; <-'* < Xx,<b be an arbitrary fixed partition of the interval
[a, b]. Show that there exist unique numbers yo, 7y, ..., }» With

n b

T 0iP(x) = | Px)dx
for all polynomials P with degree(P) < n. Hint: P(x) = 1, x, ..., x". Compare the
resulting system of linear equations with that representing the polynomial inter-
polation problem with support abscissas x;, i =0, ..., n.

2. By construction, the nth Newton-Cotes formula yields the exact value of the
integral for integrands which are polynomials of degree at most n. Show that for
even values of n, polynomials of degree n + 1 are also integrated exactly. Hint:
Consider the integrand x"*! in the interval [—k, +k], n = 2k + 1.

3. If f€ C*{a, b] then there exists an X € (a, b) such that the error of the trapezoidal
rule is expressed as follows:

"7 dx = 306~ a)r(@) + 70D = b — @ ()

Derive this result from the error formula in (2.1.4.1) by showing that f”(£(x)) is
continuous in Xx.

4. Derive the error formula (3.1.6) using Theorem (2.1.5.10). Hint: See Exercise 3.

5. Let f € C®[—1, +1], and let P e 15 be the Hermite interpolation polynomial
with P(x;))=f(x;), P'(x)) =f"(x;) xi= —1,0, +1.
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10.

1L

(a) Show that

.+1
| Pl)dt=57(=1) +1870) + 75/ (+1) + 75/ (=1) = 451 (+1).
c-1

(b) By construction, the above formula represents an integration rule which is
exact for all polynomials of degree 5 or less. Show that it need not be exact
for polynomials of degree 6.

(c) Use Theorem (2.1.5.10) to derive an error formula for the integration rule in
(a).

(d) Given a uniform partition x; =a + ih, i=0, ..., 2n, h = (b — a)/2n of the
interval [a, b}, what composite integration rule can be based on the integra-
tion rule in (a)?

. Consider an arbitrary partition A:={a = x, < ‘** < x, = b} of a given interval

[a, b]. In order to approximate
b
| r@ya

using the function values f(x;), i = 0, ..., n, spline interpolation (see Section 2.4)
may be considered. Derive an integration rule in terms of f (x;) and the moments
(2.4.2.1) of the “natural” spline (2.4.1.2a).

. Determine the Peano kernel for Simpson’s rule and n = 2 instead of n =3 in

[-1, +1]. Does it change sign in the interval of integration?

. Consider the integration rule of Exercise 5.

(a) Show that its Peano kernel does not change its sign in [— 1, +1].
(b) Use (3.2.8) to derive an error term.

. Prove

Se-e3)

using the Euler-Maclaurin summation formula.

Integration over the interval [0, 1] by Romberg’s method using Neville’s algor-
ithm leads to the tableau

h% =1 Too = T(ho)
Ty,
h% = % Tio = T(hl) T,
Ty T3
h% = ‘116 Tyo = T(hz) Ty,
T3y
h% = 617{ T30 = T(hs)

In Section 3.4, it is shown that Ty, is Simpson’s rule.

(a) Show that T, is Milne's rule.
(b) Show that T3; is not the Newton-Cotes formula for n = 8.

Let ho:=b — a, hy = hy /3. Show that extrapolating T(ho) and T(h,) linearly to
h = 0 gives the 3/8-rule.
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12. One wishes to approximate the number e by an extrapolation method.

(a) Show that T(h) = (1 + h)'™ h+ 0, [h| < 1, has an expansion of the form

which converges if [h| < 1.
(b) Modify T(h) in such a way that extrapolation to h = 0 yields, for a fixed"
value x, an approximation to e*.

13. Consider integration by a polynomial extrapolation method based on a geome-
tric step-size sequence h; = hg b,j=0,1,...,0 < b < 1. Show that small errors
AT, in the computation of the trapezoidal sums T(h;), j =0, 1, ..., m, will cause
an error AT,,, in the extrapolated value T, satisfying

IATmm, < Cm(bz) max lA’I;l’
0<j<m
where C,(0) is the constant given in (3.5.5). Note that C,(#) »> o as § — 1, so
that the stability of the extrapolation method deteriorates sharply as b
approaches 1.

14. Consider a weight function w(x) > 0 which satisfies (3.6.1a) and (b). Show that
(3.6.1c) is equivalent to

b
| w(x)dx > 0.

Hint: The mean-value theorem of integral calculus applied to suitable subinter-
vals of [a, b].

15. The integral
L1
(fa)=|_ fdlx) dx

defines a scalar product for functions f, g € C[—1, + 1]. Show that if fand g are
polynomials of degree less than n, if x;, i =1, 2, ..., n, are the roots of the nth
Legendre polynomial (3.6.18), and if

+1
vir=|  Lix)dx
-1
with
X — Xy
Li(x)= , i=12,..,n
() kl;[i Xi = Xi
k=1
then

(f.g)= z> F(xglx)

16. Consider the Legendre polynomials pj(x) in (3.6.18).

(a) Show that the leading coefficient ST/ pi(x) has value 1.
(b) Verify the orthogonality of these polynomials: (p;, p;) =0 if i < j.
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17.

18.

19.

Hint: Integration by parts, noting that

dZi +1 ;

dxzm (xz - 1) =0
and that the polynomial

dl

E (xz - l)k
is divisible by x2 — 1 if I < k.
Consider Gaussian integration, [a, b] =[—1, +1], o(x) = L.

(a) Show that 3;=0 for i > 0 in the recursion (3.6.5) for the corresponding
orthogonal polynomials pj(x) (3.6.18). Hint: pj(x) = (—1)’*'p{(—x).
(b) Verify

',+1 (_l)j22j+l

(x* — 1Y dx = 5= .
1 izj.ji(2j+l)

Hint: Repeated integration by parts of the integrand (x> — 1} = (x + 1)(x — ).
(c) Calculate (p;, p;) using integration by parts (see Exercise 16) and the result
(b) of this exercise. Show that

l'2

@i+ 1)2i — 1)

v =
1

for i > 0 in the recursion (3.6.5).

Consider Gaussian integration in the interval [ — 1, + 1] with the weight function

o(x) =

In this case, the orthogonal polynomials p;(x) are the classical Chebychev poly-
nomials, To(x)=1, Ti(x)=x, T(x)=2x2-1, Ti(x)=4x>-3x,...,
T, 1(x) = 2xT(x) — T;-1(x), up to scalar factors.

(a) Prove that pj(x) = (1/2/~')Tj(x) for j = 1.What is the form of the tridiagonal
matrix (3.6.19) in this case?

(b) For n =3, determine the equation system (3.6.13). Verify that w; = w, =
wj = m/3. (In the Chebychev case, the weights w; are equal for general n.)

Denote by T(f; h) the trapezoidal sum of step length h for the integral

1
‘ f(x)dx.
0

For a > 1, T(x*; h) has the asymptotic expansion

.1
T(x*; h)~ | x*dx + aih'** + a,h* + ash* + agh® + -
0
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Show that, as a consequence, every function f(x) which is analytic on a disk
|z| <r in the complex plane with r > 1 admits an asymptotic expansion of the
form

L1
T(*f(x); h) ~ | x*f(x)dx + by h'** + byh*** + byh3** 4 ---
‘0

+ e h? +egh* +cgh® + -,

Hint: Expand f(x) into a power series and apply T(¢ + y; h) = T(¢p; h) +
T(y: h).

References for Chapter 3

Abramowitz, M., Stegun, 1. A.: Handbook of Mathematical Functions. National
Bureau of Standards, Applied Mathematics Series 55, Washington, D.C.: U.S.
Government Printing Office 1964, 6th printing 1967.

Bauer, F. L., Rutishauser, H., Stiefel, E.: New aspects in numerical quadrature. Proc.
of Symposia in Applied Mathematics 15, 199-218, Amer. Math. Soc. 1963.
Bulirsch, R.: Bemerkungen zur Romberg-Integration. Numer. Math. 6, 6-16 (1964).
, Stoer, J.: Fehlerabschatzungen und Extrapolation mit rationalen Funk-
tionen bei Verfahren vom Richardson-Typus. Numer. Math. 6, 413-427 (1964).
—: Numerical quadrature by extrapolation. Numer. Math. 271-278

(1967).

Davis, P. J.: Interpolation and Approximation. New York: Blaisdell 1963, 2nd print-
ing 1965.

————, Rabinowitz, P.: Methods of Numerical Integration. New York: Academic
Press 1975.

Erdelyi, A.: Asymptotic Expansions. New York: Dover 1956.

Gautschi, W.: Construction of Gauss—Christoffel quadrature formulas. Math. Comp.
22, 251-270 (1968).

——: On the construction of Gaussian quadrature rules from modified moments.
Math. Comput. 24, 245-260 (1970).

Golub, G. H,, Welsch, J. H.: Calculation of Gauss quadrature rules. Math. Comput.
23, 221-230 (1969).

Grobner, W., Hofreiter, N.: Integraltafel, 2 vols. Berlin: Springer Verlag 1961.

Kronrod, A. S.: Nodes and Weights of Quadrature Formulas. Authorized translation
from the Russian. New York: Consultants Bureau 1965.

Henrici, P.: Elements of Numerical Analysis. New York: Wiley 1964.

Olver, F. W. J.: Asymptotics and Special Functions. New York: Academic Press 1974.

Piessens, R., de Doncker, E., Uberhuber, C. W., Kahaner, D. K.: Quadpack, A
Subroutine Package for Automatic Integration. Berlin, Heidelberg, New York:
Springer-Verlag 1983.

Romberg, W.: Vereinfachte numerische Integration. Det. Kong. Norske Videnskabers
Selskab Forhandlinger 28, Nr. 7, Trondheim 1955.

Schoenberg, 1. J.: Monosplines and quadrature formulae. In: Theory and Applica-
tions of Spline Functions. Edited by T. N. E. Greville. 157-207. New York:
Academic Press 1969.

Steffensen, J. F.: Interpolation (1927) 2nd edition. New York: Chelsea 1950.

Stroud, A. H,, Secrest, D.: Gaussian Quadrature Formulas. Englewood Cliffs, N.J.:
Prentice-Hall 1966.

Szego, G.: Orthogonal Polynomials. New York: Amer. Math. Soc. 1959.



Systems of Linear Equations

In this chapter direct methods for solving systems of linear equations
Ay ... Qqn b.x
Ax = b, A= : 1, b= 1:
Ay .- Ay b,

will be presented. Here A is a given n x n matrix, and b is a given vector. We
assume in addition that A and b are real, although this restriction is inessen-
tial in most of the methods. In contrast to the iterative methods (Chapter 8),
the direct methods discussed here produce the solution in finitely many
steps, assuming computations without roundoff errors.

This problem is closely related to that of computing the inverse A~ ! of
the matrix A provided this inverse exists. For if 47! is known, the solution x
of Ax =b can be obtained by matrix vector multiplication, x = 47 !b.
Conversely, the ith column g; of A~ ! = (a,, ..., a,) is the solution of the
linear system Ax = ¢;, wheree; = (0,...,0, 1,0, ..., 0)7 is the ith unit vector.

A general introduction to numerical linear algebra is given in Golub and
van Loan (1983) and Stewart (1973). ALGOL programs are found in Wilkinson
and Reinsch (1971), FORTRAN programs in Dongarra, Bunch, Moler, and
Stewart (1979).

4.1 Gaussian Elimination. The Triangular
Decomposition of a Matrix

In the method of Gaussian elimination for solving a system of linear
equations

4.1.1) Ax = b,

167
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where 4 is an n x n matrix and b € R", the given system (4.1.1) is trans-
formed in steps by appropriate rearrangements and linear combinations of
equations into a system of the form

Fix e T

Rx =c, R = '
0 Fan

which has the same solution as (4.1.1). R is an upper triangular matrix, so

that Rx = ¢ can easily be solved by “ back substitution” (so long as r; # 0,

i=1...n)

S n - -
_G— Zk=itl FikXk
)

AVE

1

; fori=nn—1,...,1

In the first step of the algorithm an appropriate multiple of the first
equation is subtracted from all of the other equations in such a way that the
coefficients of x, vanish in these equations; hence, x, remains only in the
first equation. This is possible only if a,, # 0, of course. which can be
achieved by rearranging the equations if necessary, as long as at least one
a;, + 0. Instead of working with the equations themselves, the operations
are carried out on the matrix

al‘ . e al" [).1
(4. b) = D

au 1 st aml bn

which corresponds to the full system given in (4.1.1). The first step of the
Gaussian elimination process leads to a matrix (4", ') of the form

ay, a, ... a, b
0 ; ... a- :

(4.12) (4. p)y=| | 92 Gz b2
0 a;nZ R a;m h;l

and this step can be described formally as follows:

(4.1.3)
(a) Determine an element a,; # 0 and proceed with (b); if no such r exists, A is
singular; set (A', b') == (A, b); stop. B
(b) Interchange rows r and 1 of (A, b). The result is the matrix (A, b).
(c) Fori=2,3,...,n subtract the multiple
liy=ay /ay,

of row 1 from row i of the matrix (A, b). The desired matrix (A’ b') is
obtained as the result.
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The transition (4, b) — (A4, b) = (4’, b’) can be described by using matrix
multiplications:

(4.14) (A, b)= P,(A, b), (A", b') = G,(A, b) = G, P,(A, b),
where P is a permutation matrix, and G, is a lower triangular matrix:
(4.1.5)

[0 1 0]
1 1 0
B 1 B L, 1
Pr=1y 0 P
1 —lnl 0 1
1
| 0 1

Matrices such as G,, which differ in at most one column from an identity

matrix, are called Frobenius matrices. Both matrices P, and G, are nonsingu-
lar; in fact

P;1=Pl, Gl_1= 121 1

For this reason, the equation systems Ax = b and A’x = b’ have the same
solution: Ax =b implies G, P, Ax=A'x=b"=G,P,;b, and A'x="b
implies P{!G;'A'x = Ax =b = P{'G[ V.

The element a,; = a,, which is determined in (a) is called the pivot ele-
ment (or simply the pivot), and step (a) itself is called pivotr selection (or
pivoting). In the pivot selection one can, in theory, choose any a,; # 0 as the
pivot element. For reasons of numerical stability (see Section 4.5) it is not
recommended that an arbitrary a,; # 0 be chosen. Usually the choice

|a,,| = max|a;|
i

is made; that is, among all candidate elements the one of largest absolute
value is selected. (It is assumed in making this choice however-—see Section
4.5—that the matrix A is “equilibrated ”, that is, that the orders of magni-
tudes of the elements of 4 are * roughly equal ”.) This sort of pivot selection
is called partial pivot selection (or partial pivoting), in contrast to complete
pivot selection (or complete pivoting), in which the search for a pivot is not
restricted to the first column; that is, (a) and (b) in (4.1.3) are replaced by (a’)
and (b'):

(a’) Determine r and s so that

la,| = qu|a,-j|
L]
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and continue with (b') if a,; # 0. Otherwise A is singular; set (A, b') =
(A, b); stop.

(b’) Interchange rows 1 and r of (A, b), as well as columns 1 and s. Let the
resulting matrix be (A, b).

After the first elimination step, the resulting matrix has the form (4.1.2):
aya’ : b}
(A4, b) = [---1--1--
0, A:1b
with an (n — 1)-row matrix A. The next elimination step consists simply of

applying the process described in (4.1.3) for (4, b) to the smaller matrix
(A, b). Carrying on in this fashion, a sequence of matrices

(A, b) = (A?, ) > (AD, ) 5 --- 5 (4@~ D, pn= DY =: (R, c)

is obtained which begins with the given matrix (4, b) (4.1.1) and ends with
the desired matrix (R, ¢). In this sequence the jth intermediate matrix
(A9, b?) has the form

* - % *:* * k]
*l
1
. .
. . . |
R R S O R ML
(4.1.6) (A9, b)Y = |----------- . = |-
0 - 01 ook 0 1A% by
N - .
0 01+ -

with a j-row upper triangular matrix AY}. The transition (4%, bY)—
(AUTD, pUT D) consists of the application of (4.1.3) on the (n—j) x
(n — j + 1) matrix (4Y¥)}, by’). The elements of AY), AY}, b$’ do not change
from this step on; hence they agree with the corresponding elements of
(R, c). As in the first step, (4.1.4) and (4.1.5), the ensuing steps can be

described using matrix multiplication. As can be readily seen
A(j’, b= G.P. A(i‘ll, pu-b ,
(@17) ( ) =GPy )
(R,c)=G,_P,_1G, ,P, ,...GP(A,b),

with permutation matrices P; and nonsingular Frobenius matrices G; of the
form

[ 1 0]
(4.1.8) G, = 1
_l_l'+1,1 1
| 0 L, 0 1]
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In the jth elimination step (4Y~ 1, bY~Y) — (4Y, b'?) the elements below the
diagonal in the jth column are anihilated. In the implementation of this
algorithm on a computer, the locations which were occupied by these ele-
ments can now be used for the storage of the important quantities /
i2j+ 1, of G; that is, we work with a matrix of the form

ij>

ryq ria cee r“ : rl.j+1 e Yin Cy
—-—=- | : :
N :
SR CYRNRTP SYRN :
! . :
TO = | 431 A3z ! o :
STy T i Fin €
. | i e e e e e e e e e - - ——
. | . . .
. (J) () )
: Ajva,j ' @i jer - Gy DR
: : X : : :
[©)] ) ()
Llnl )'n?. 2'rlj ll an.j+l s a:(lj,n bn ]

Here the subdiagonal elements A, &, A4+ k5 - --» A Of the kth column are
a certain permutation of the elements [, ,, 4, ..., I, , of G; in (4.1.8).

Based on this arrangement, the jth step TV" D > T9 j=1,2,...,.n— 1,
can be described as follows (for simplicity the elements of TV~ are denoted
by t, and those of TV by tj, 1 <i<n 1<k<n+1):

(@) Partial pivot selection: Determine r so that
|t,;] = max|t;]|.
i>j
If t,; =0, set TV :=TU~Y: A is singular; stop. Otherwise carry on with

(b) glr)zl‘erchange rows r and j of TV~ Y, and denote the result by T = (ty)-
(c) Replace

t=ly=t,ft; fori=j+1,j+2,....n,

th=tg—ljty fori=j+1,..,nandk=j+1,....n+1,

th ==ty otherwise.

We note that in (c) the important elements I, , ;, ..., l,; of G; are stored
in their natural order as tj, , ;, ..., t,;. This order may, however, be changed
in the subsequent elimination steps T® — T** 1 k > j, because in (b) the
rows of the entire matrix T® are rearranged. This has the following effect:
The lower triangular matrix L and the upper triangular matrix R,

1'. O tll .. tln
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which are contained in the final matrix 7"~V = (t,), provide a triangular
decomposition of the matrix PA:

(4.1.9) LR = PA.

In this decomposition P is the product of all of the permutations appearing
in (4.1.7):

P=P,_,P,_,..P,.

We will only show here that a triangular decomposition is produced if no
row interchanges are necessary during the course of the elimination process,

ie,if Py =---=P,_,=P=1I In this case,
1 0
L=| :
Lo L

since in all of the minor steps (b) nothing is interchanged. Now, because of
(4.1.7),

R=G"_1 ...GIA;

therefore
(4.1.10) Gi'...G;,R=A.
Since
1 0]
1
G l=
! v - ’
i s 1
it is easily verified that
1 0
Ly -,
Gl_l... ,,__llz . .. =L
Inl ln,n—l 1

Then the assertion follows from (4.1.10).
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EXAMPLE.
31 6] [x
213 x1=171.
111 X3
® 1 62 301 6,2 31 62
4 i 1
-SRI N I S O e E E L
] 1 i
11 114 1@ -1y 3 3[(CDla

The pivot elements are marked. The triangular equation system is

3 1 6 Xy 2

0 % —l X2 = !39

0 0 —% X3 4
Its solution is

X3 = —8,

x; =38+ x3)= -7,

x; =42 — x; — 6x3)=19.

Further
[1 0 0'| 316
P=|0 0 1], PA=]1 1 1],
[0 1 0l 213
and the matrix PA has the triangular decomposition PA = LR with
T 0 07 31 6
L=1|4 1 0}, R=]0 3§ -1
L% o1 0 0 —4

Triangular decompositions (4.1.9) are of great practical importance in
solving systems of linear equations. If the decomposition (4.1.9) is known for
a matrix A4 (that is, the matrices L, R, P are known), then the equation
system

Ax=b
can be solved immediately with any right-hand side b; for it follows that
PAx = LRx = Pb,
from which x can be found by solving both of the triangular systems
Lu = Pb, Rx =u
(provided all r; # 0).
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Thus, with the help of the Gaussian elimination algorithm, it can be
shown constructively that each square nonsingular matrix A has a triangular
decomposition of the form (4.1.9). However, not every such matrix A4 has a
triangular decomposition in the more narrow sense A = LR, as the example

01

A=11 o

shows. In general, the rows of A must be permuted appropriately at the
outset.

The triangular decomposition (4.1.9) can be obtained directly without
forming the intermediate matrices TV. For simplicity, we will show this
under the assumption that the rows of 4 do not have to be permuted in
order for a triangular decomposition A = LR to exist. The equations
A = LR are regarded as n? defining equations for the n* unknown quantities

that 1s,

min{i. k)

(4.1.11) ag=Y lyn  (li=1)
=1

The order in which the [;;. r; are to be computed remains open. The
following versions are common:
In the Crout method the n x n matrix 4 = LR is partitioned as follows:

1

2{elofe]s

3
5
7

and the equations A = LR are solved for L and R in an order indicated by
this partitioning:

1
(1) a;= Z Lirsis ru=ayg, i=1,2,...,n
j=1
1
(2) a, = Z lij’”jl’ ly=ay=ay/ry,, 1=2,3,....n
i=1

2 .
(3) ayi= Y Lyjry, ra=ay —lyry, i=2,3,... netc
j=1
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And in general, fori= 1,2, ..., n,
i-1

Fi *= Qi — Zlijrjk k=i,i+1,...,n,
ji=1

i—-1
1 = A = Xj=1 byt
ki -

r

(4.1.12)
k=i+1,i+2,...,n
In all of the steps above ;=1 fori=1,2,...,n

In the Banachiewicz method, the partitioning

is used; that is, L and R are computed by rows.

The formulas above are valid only if no pivot selection is carried out.
Triangular decomposition by the methods of Crout or Banachiewicz with
pivot selection leads to more complicated algorithms; see Wilkinson (1965).

Gaussian elimination and direct triangular decomposition differ only in
the ordering of operations. Both algorithms are, theoretically and numer-
ically, entirely equivalent. Indeed, the jth partial sums

J
(4113) at‘i):zaik - Zlisrsk
s=1

of (4.1.12) produce precisely the elements of the matrix AY in (4.1.6), as can
easily be verified. In Gaussian elimination, therefore, the scalar products
(4.1.12) are formed only in pieces, with temporary storing of the intermediate
results; direct triangular decomposition, on the other hand, forms each
scalar product as a whole. For these organizational reasons, direct triangu-
lar decomposition must be preferred if one chooses to accumulate the scalar
products in double-precision arithmetic in order to reduce roundoff errors
(without storing double-precision intermediate results). Further, these
methods of triangular decomposition require about n*/3 operations (1
operation = 1 multiplication + 1 addition). Thus, they also offer a simple
way of evaluating the determinant of a matrix A: From (4.1.9) it follows,
since det(P) = +1, det(L) = 1, that

det(PA) = tdet(A)=det(R)=r, r2y ... 1

Up to its sign, det(A) is exactly the product of the pivot elements. (It should
be noted that the direct evaluation of the formula

nn*

n

det(A) = Z Sign(#x, Tty H’n) alll102uz cce anu,,

Hi,eees Hp=1
ni ¥ ufor ik

requires n! > n*/3 operations.)
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In the case that P = I, the pivot elements r;; are representable as quotients
of the determinants of the principal minors of A. If, in the representation
LR = A, the matrices are partitioned as follows:

lL“ 0 HR sz} _ iA“ Au]
LZI L22 0 R22 A12 AZZ ’
it is found that L,, R,, = A,,; hence det(R,,) = det(A4,,), or

Fyg oo g = det(All),

where A, is an i x i matrix. In general, if A4; denotes the ith principal minor
of A, then

r; = det(4;)/det(4;-,), =2
Fyy = det(A,)

A further practical and important property of the method of triangular
decomposition is that, for band matrices with bandwidth m,

- —

%* PR *

A= , a;=0 for|i—j|>m,

the matrices L and R of the decomposition LR = PA of A are not full: Risa
band matrix with bandwidth 2m — 1,

* ... * 0
- 12m—1
0 1

and in each column of L there are at most m elements different from zero. In
contrast, the inverses 4~ ! of band matrices are usually filled with nonzero
entries.

Thus, if m < n, using the triangular decomposition of 4 to solve Ax =b
results in a considerable saving in computation and storage over using 4.
Additional savings are possible by making use of the symmetry of A if Aisa
positive definite matrix (see Sections 4.3 and 4.A).
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4.2 The Gauss-Jordan Algorithm

In practice, the inverse 4~ ! of a nonsingular n x n matrix A is not frequently
needed. Should a particular situation call for an inverse, however, it may be
readily calculated using the triangular decomposition described in Section
4.1 or using the Gauss-Jordan algorithm, which will be described below.
Both methods require the same amount of work.

If the triangular decomposition PA = LR of (4.1.9) is available, then the
ith column a; of A7 ! is obtained as the solution of the system

(4.2.1) LRa; = Pe;,

where ¢; is the ith coordinate vector. If the simple structure of the right-hand
side of (4.2.1), Pe;, is taken into account, then the n equation systems (4.2.1)
(i=1,...,n) can be solved in about 3n* operations. Adding the cost of
producing the decomposition gives a total of n* operations to determine
A~ The Gauss-Jordan method requires this amount of work, too, and
offers advantages only of an organizational nature. The Gauss-Jordan
method is obtained if one attempts to invert the mapping x —» Ax =y,
x € R", y € R" determined by A in a systematic manner. Consider the system
Ax =y:

ag;x, +-+ A1nXn = Y15
42.2)
Ay X+ + Xy = Yy
In the first step of the Gauss-Jordan method, the variable x, is exchanged

for one of the variables y,. To do this, an a,, # 0 is found, for example
(partial pivot selection)

|a,| =mgx|ai1|,
i

and equations r and 1 of (4.2.2) are interchanged. In this way, a system

allxl + -+ alnxn = j’l’
(4.2.3)

a,1 X1 + +&nnxn=yn

is obtained in which the variables y,, ..., y, are a permutation of y, ..., y,
and a,, = a,;, y; = y, holds. Now, a,, # 0, for otherwise we would have
a;; = 0 for all i, making A singular, contrary to assumption. By solving the
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first equation of (4.2.3) for x; and substituting the result into the remaining
equations, the system

a,ll,‘-“ + a,12x2 + 4+ a,lnxn = Xy,

a31y1 +ayx; + 0+ ayXx,=Y,,
(4.2.4)

Qi Y1+ Xy + 0+ G X, = Y,

is obtained with

A 1 ;e (3T7%
ayy = QT — -,
42 i 1
2.5 _ I
(423) s = Gin f s GG .
ail:z__', aik:=aik_———— for l,k=2, 3,...,",
ai, a;

In the next step, the variable x, is exchanged for one of the variables y,,
...» Y3 then x; is exchanged for one of the remaining y variables, and so on.
If the successive equation systems are represented by their matrices, then
starting from A := A, a sequence

AO 5 4D ., 40

is obtained. The matrix AY = (a{) stands for a “ mixed equation system ” of
the form

) 5 DY j j) —
ally, + -+ a(ljj)')’j + a(lj,)j+1xj+1 + 4+ aflx, =x,,

) 5 )Ry j () =
aj"lyl + + a‘(i{i)y]' + a_(,{)j+1x]'+1 + + aj':lx" = xj,

426) . : ) .
L T 5 ) -3
afl g i+ afly P+ a X o X = Y

ayi+ -+ a4+ aPxi o+ adx, =7,

In this system (yy, ..., ¥;, ¥j+1, ---, ¥») IS @ certain permutation of the ori-
ginal variables (yy, ..., y,). In the transition 49" — 4Y the variable x; is
exchanged for ;. Thus, AY is obtained from AY~ " according to the rules
given below. For simplicity, the elements of AY~ 1 are denoted by a; , and
those of AY are denoted by a, .

4.2.7)

(a) Partial pivot selection: Determine r so that

|a,)-| = maxlaul.
izj

If a,; = 0, the matrix is singular. Stop.
J



42 The Gauss-Jordan Algorithm 179

(b) Interchange rows r and j of AY™"), and call the result A = (ay).
(c) Compute AY = (a}) according to the formulas [compare with (4.2.5)]

L— =
aj;*=1/a;,
a @
v jk ro_ Yij . .
Ap = ———, ;=" for i, k#j
ajj i
a;;a;
A ij*jk
A=Ay ———— -
ajj

(4.2.6) implies that
(42.8) A =x,  J= (s 90

where J,, ..., ¥, is a certain permutation of the original variables y, ..., y,,
¥ = Py which, since it corresponds to the interchange step (4.2.7b), can easily
be determined. From (4.2.8) it follows that

( A P)y = X,
and therefore, since Ax = y,

A"l = AWP.
EXAMPLE.
Q11 1 -1 -1 2 -1 1
A=49=}11 2 3|-av=|l1 @ 2[|-42=1]-1 1 =2
1 36 1 2 s -1 2 @
3 -3 1
A= §-3 5 -2|=4"
1 =2 1

The pivot elements are marked.

The following ALGOL program is a formulation of the Gauss-Jordan
method with partial pivoting. The inverse of the n x n matrix A is stored
back into A. The array p[i] serves to store the information about the row
permutations which take place.

for j:=1 step 1 until n do p[j]:=j;
for j:=1 step 1 until n do
begin
pivotsearch:
max = abs (a[j, j1); r =j;
for i:=j + 1 step 1 until n do
if abs (a[i, j]) greater max then
begin max = abs (a[i, j});
ri=i

end;
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if max = 0 then goto singular;

rowinterchange:
if r > j then
begin for k :=1 step 1 until n do
begin
hr = a[j, k]; a[j, k] == a[r, k];
afr, k] =hr
end;
hi= p[j}; p{j] = plr}; p[r]:= hi
end;
transformation:

hr:=1/afj, j];
for i =1 step 1 until n do
ali, j1= hr x dfi, j];

alj, j]:= hr,
for k:==1step 1 until j — 1, j + 1 step 1 until n do
begin

for i:==1step 1 until j — 1, j + 1 step 1 until n do
ali, k}=afi, k] — a[i, j] x a[j, k];
alj, k)= —hr x a[j, k]
end k
end j;
columninterchange:
for i:=1 step 1 until n do
begin
for k =1 step 1 until n do hv[p[k]] = q[i, k];
for k=1 step 1 until n do afi, k] = hv[k]
end;

4.3 The Cholesky Decomposition

The methods discussed so far for solving equations can fail if no pivot
selection is carried out, i.e. if we restrict ourselves to taking the diagonal
elements in order as pivots. Even if no failure occurs, as we will show in the
next sections, pivot selection is advisable in the interest of numerical stabi-
lity. However, there is an important class of matrices for which no pivot
selection is necessary in computing triangular factors: the choice of each
diagonal element in order always yields a nonzero pivot element. Further-
more, it is numerically stable to use these pivots. We refer to the class of
positive definite matrices.

(4.3.1) Definition. A (complex) n x n matrix A is said to be positive definite
if it satisfies:
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(a) A = A", ie, A is a Hermitian matrix.
(b) x*Ax > 0 for all x e C", x # 0.

A= A" is called positive semidefinite if x* Ax > 0 holds for all x € C".

(4.3.2) Theorem. For any positive definite matrix A the matrix A~ exists and
is also positive definite. All principal submatrices of a positive definite matrix
are also positive definite, and all principal minors of a positive definite matrix
are positive.

Proor. The inverse of a positive definite matrix A exists: If this were not the
case, an x # 0 would exist with Ax = 0 and x" Ax = 0, in contradiction to
the definiteness of A. A~! is positive definite: We have (47 ') =
(4")"' = 47! and if y # O it follows that x = 4~ 'y # 0. Hence y" 4" 1y =
xHA" A= Ax = x" Ax > 0. Every principal submatrix

- a,-!il, cee a,:lik
i=1":

Aipiys -+ Qi

of a positive definite matrix A is also positive definite: Obviously A% = A.
Moreover, every

X1
x= | ] eCk xX#0,
Xy
can be expanded to
X4 . .
i X, foru=i,j=1,...,k,
=1]:]ecC" 0 ==’ y o >
X X X700 x, |0 otherwise,

and it follows that
" Ax = x"Ax > 0.

In order to complete the proof of (4.3.2), then, it suffices to show that
det(A4) > 0 for positive definite A. This is shown by using induction on n.
For n = 1 this is true from (4.3.1b). Now assume that the theorem is true
for positive definite matrices of order n — 1, and let A be a positive definite
matrix of order n. According to the preceeding parts of the proof,
al l e al"
A '= |
Oy nn

is positive definite, and consequently a,, > 0. As is well known,

a.22 e Aoy,

An2 ... A,y
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By the induction assumption, however,

ay; ... dy,
det : : > 0,
Ay ... dp,
and hence det(4) > 0 follows from a,, > 0. O

(4.3.3) Theorem. For each n x n positive definite matrix A there is a unique
n x n lower triangular matrix L (I, =0 for k > i)withl; >0,i=1,2,...,n,
satisfying A = LI". If A is real, so is L.

(Note that I;; = 1 is not required.)

PrOOE. The theorem is established by induction on n. For n = 1 the theorem
is trivial: A positive definite 1 x 1 matrix A = («)is a positive number a > 0,
which can be written uniquely in the form

x=1y1, 111=+\/a-

Assume that the theorem is true for positive definite matrices of order n — 1.
An n x n positive definite matrix 4 can be partitioned into

An_l b
b a
where be C""! and A4,_, is a positive definite matrix of order n — 1 by

(4.3.2). By the induction hypothesis, there is a unique matrix L,_; of order
n — 1 satisfying

A=

)

nn

‘4,,_1 = L"_ 1L£|I_ 1+ lik = O fOI‘ k > i. 1,-,- > 0
We consider a matrix L of the form
L=1{]
ct 2
and try to determine ¢ € C"~ !, x > 0 so that
L., o)[L", ¢] (A, b '
434 " " = | 7 = A.
( 3 ) L,H 1] [0 ® bll a,,
This means that we must have
L"_ 1€ = b,
dle+o?=a,, a2>0.

The first equation must have a unique solution ¢ = L, !, b,since L,_,,as
a triangular matrix with positive diagonal entries, has det(L,_,) > 0. As for
the second equation, if cc > a,, (that is, «*> < 0), then from (4.3.1) we would
have a contradiction with a? > 0, which follows from

det(4) = |det(L,_,)|*?,
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det(A) > 0 (43.2), and det(L,-,) > 0. Therefore, from (4.3.4), there exists
exactly one o > 0 giving LI = A, namely

a= +/a, —c'c. ]

The decomposition 4 = LI can be determined in a manner similar to
the methods given in Section 4.1. If it is assumed that all [;; are known for
j <k — 1, then as defining equations for [, and I, i > k + 1, we have
P UL A

Ay = liglhq + ligla + - + Lyl
from A = LI".
For a real A, the following algorithm results:

for i:=1 step 1 until n do
for j:=i step 1 until n do
begin x = dafi, j];
for k:=i— 1 step — 1 until 1 do
x=x — da[j, k] x d[i, k};
if i = j then begin
if x < O then goto fail;
pli] = 1/sqrt (x)
end else
alj. il = x pi]
end i, j;

Note that only the upper triangular portion of A is used. The lower
triangular matrix L is stored in the lower triangular portion of A4, with the
exception of the diagonal elements of L, whose reciprocals are stored in p.

This method is due to Cholesky. During the course of the computation, n
square roots must be taken. Theorem (4.3.3) assures us that the arguments of
these square roots will be positive. About n*/6 operations (multiplications
and additions) are needed beyond the n square roots. Further substantial
savings are possible for sparse matrices, see Section 4.A. Finally, note as an
important implication of (4.3.5) that

(4.3.6) lhil < Vaw, Jj=1...,k k=1,....n

That is, the elements of L cannot grow too large.

44 Error Bounds

If any one of the methods described in the previous sections is used to
determine the solution of a linear equation system Ax = b, then in general
only an approximation x to the true solution x is obtained, and there arises
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the question of how the accuracy of x is judged. In order to measure the error

X —X

we have to have the means of measuring the *size” of a vector. To do this, a

(4.4.1) norm: ||x||
is introduced on C"; that is, a function
I-):C"— R,

which assigns to each vector x € C" a real value | x|| serving as a measure for
the “size” of x. The function must have the following properties:

(442)
(@) ||x]] > 0 for all x € C", x # O (positivity),
(b) [lax| = || || x| for all « € C, x € C* (homogeneity),

©) [x+y| <|x|| + |ly| for all x, y € C" (triangle inequality).
In the following we use only the norms

—
Ixl.=Vx"x= Y |x]*  (Euclidian norm),
i1

[|X]| o = max | x;| (maximum norm).
i

(443)

The norm properties (a), (b), (c) are easily verified.
For each norm || - || the inequality

(4.4.4) Ix =yl = ||x]| = |vll| forallx, yecC"
holds. From (4.4.2¢) it follows that
Ixl =16 = y) + ¥l < flx = vl + Iyl

and consequently |[x — y| = |x|| — [y|. By interchanging the roles of x and
y and using (4.4.2b), it follows that

Ix =yl =1y =xl = Iyl = IxI,

and hence (4.4.4).
It is easy to establish the following:

(4.4.5) Theorem. Each norm |-| on R" (or C") is a uniformly continuous
function with respect to the metric p(x, y) = max; | x; — y;| on R" (C").
ProoF. From (4.4.4) it follows that

Ll + kL = DIl < (1A
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Now h=Y"_, h;e;, where h = (hy, ..., h,), and ¢; are the usual coordinate
(unit) vectors of R"(C"). Therefore

(LIS _Zl |hi| e < max|hi| ¥ lle;|| = M max|h;]

j=1

with M =3"_, |e;|. Hence, for each ¢ > 0 and all h satisfying max; |h;| <
¢/M, the inequality

Hix + Al = lIxl] < e

holds. That is, || || is uniformly continuous. a
This result is used to show:
(4.4.6) Theorem. All norms on R*(C") are equivalent in the following sense: For
each pair of norms p(x), p,(x) there are positive constants m and M satisfying
mp,(x) < py(x) < Mp,(x) for all x.

PrOOF. We will prove this only in the case that p,(x) = | x|| == max; | x;|. The
general case follows easily from this special result. The set

l

S= {xe C"|max |x,| = 1‘

is a compact set in C" Since p,(x) is continuous by (4.4.5),
max,.s p;(x)=M > 0 and min, . p,(x) = m > 0 exist. Thus, for all y # 0,
since y/||y|| € S, it follows that

yy_ L

and therefore m||y| < p,(y) < M|)y]. 0

For matrices as well, A € M(m, n) of fixed dimensions, norms || A|| can be
introduced. In analogy to (4.4.2), the properties

|A]l >0 forall A0, A€ M(m,n),
l2Al = Ja| Al
14+ Bl < [[A] + | Bl

are required. The matrix norm |- || is said to be consistent with the vector
norms |- ||, on C" and |- ||, on C™ if

IAx]» < | A |x]. for all x € C", 4 € M(m, n).

A matrix norm || - || for square matrices 4 € M(n, n) is called submultipli-
cative if

|AB| < |A| |B| forall A, Be M(n, n).
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Frequently used matrix norms are

(4.4.7a) | Al = max Z | au| (row-sum norm),
1/2
(4.4.7b) 4| = ( Z |a,k|2) (Schur norm),
(4.4.7¢c) [A] = max |ag].
ik

(a) and (b) are submultiplicative; (c) is not; (b) is consistent with the Eucli-
dian vector norm. Given a vector norm |x||, a corresponding matrix norm
for square matrices, the subordinate matrix norm, can be defined by

(4.4.8) lub(A4) = max 4x]

szo x|
Such a matrix norm is consistent with the vector norm || - || used to define it:
(4.49) [[Ax| < lub(A) ||x].

Obviously lub(4) is the smallest of all of the matrix norms | A| which are
consistent with the vector norm | x||:

| 4x| < |4} x| forallx = lub(4) < ||A]l.

Each subordinate norm lub(-) is submultiplicative:

lub(A4B) = max |1 4Bx] = max [ABY)] ”—BL“
weo X o IBx[ (Il
< max 120 o IBXL _yba) 1ab(B),
va T e N

and furthermore lub(/) = max, ., ||I\||/||\|| =1
(4.4.9) shows that lub(A) is the greatest magnification which a vector may
attain under the mapping determined by A: It shows how much || Ax||, the

EXAMPLE.

(a) For the maximum norm | x|, = max, |x,| the subordinate matrix norm is the
row-sum norm

lub(A4) = max I4x] =ma ]maxi|z,, ! a,kx,,|| = max Z law]-
x#0 [|1X]lw x#0| max, | x| i k=1
(b) Associated with the Euclidian norm ||x|, =./x"x we have the subordinate

matrix norm

lub,(A) = max \/ ;ﬁ% = (A" 4),

x#0
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which is expressed in terms of the largest eigenvalue A,,,(A”A) of the matrix
A" A. With regard to this matrix norm, we note that

(4.4.10) lub(U) = 1

for unitary matrices U, that is, for matrices defined by U#U = I.

In the following we assume that | x|| is an arbitrary vector norm and || 4|
is a consistent submultiplicative matrix norm. Specifically, we can always
take the subordinate norm lub(A) as || 4] if we want to obtain particularly
good estimates in the results below. We shall show how norms can be used
to bound the influence due to changes in 4 and b on the solution x to a
linear equation system

Ax = b.
If the solution x + Ax corresponds to the right-hand side b + Ab,
A(x + Ax) = b + Ab,

then the relation

Ax=A"1Ab
follows from A Ax = Ab, as does the bound
(44.11) lax < |47 |Ab].
For the relative change |Ax|/||x||, the bound
Ax Ab Ab
o I e 98] g 21
follows from |b|| = |Ax| < [|4] |x|. In this estimate, cond(A4):=

|A|l |A~*|- For the special case that cond(A):=lub(A) lub(4™"), this so-
called condition of A is a measure of the sensitivity of the relative error in
the solution to changes in the right-hand side b. Since A4~' = I, cond(A4)
satisfies

lub(I) = 1 < lub(4) lub(A™ ") < || A |47 | = cond(A).

The relation (4.4.11) can be interpreted as follows: If X is an approximate
solution to Ax = b with residual

r(X)=b— Ax = A(x — X),
then X is the exact solution of
Ax = b — r(x),
and the estimate
(4.4.13) lAx] < A~ [r(x)]

must hold for the error Ax = x — x.
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Next, in order to investigate the influence of changes in the matrix 4 upon
the solution x of Ax = b, we establish the following

(4.4.14) Lemma. If F is an n x n matrix with |F|| < 1, then (I + F)™ ! exists
and satisfies

-1 1
I+ B < =y

PrOOF. From (4.4.4) the inequality
I+ F)xll = llx + Fx|| > |Ix]| = [ Fx]| = (1 = |F])lix]

follows for all x. From 1 — | F|| > O it follows that ||(I + F)x|| > 0if x # 0;
that is, (/ + F)x =0 has only the trivial solution x=0, and I + F is
nonsingular.

Using the abbreviation C:= (I + F)™, it follows that

L= |1 =t + F)C|| = ||C + FC]|
> |Cll = lcl |F]
= €It = |F|)>o.

from which we have the desired result

1
T+ F) Y < ——:.
| = JF
We can now show:

(4.4.15) Theorem. Let A be a nonsingular n x n matrix, B= A(I + F),
|F|l < 1. and x and Ax be defined by Ax = b, B(x + Ax) = b. It follows that

laxl _ IFl
I ST=]FT
as well as -
|l Ax|| < cond(A) ||BH—|A||
)~ 1B — 4} |4
1 - cond(A)—”/ar

if cond(A) - |B — A|/||All < 1.
Proor. B™! exists from (4.4.14), and
Ax=B'b— A" '"h=BYA—B)A" b, x=A"lb,
A
Il < 14— B = -+ ) 1414

<]

_ F
<+ Fy 1 JF] < A

L= |F|
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Since F = A~'(B — A)and |F|| < |A™!|| |A] |B — A]|/|| 4], the rest of the
theorem follows. O

According to Theorem (4.4.15), cond(A) also measures the sensitivity of
the solution x of Ax = b to changes in the matrix A.
If the relations

C=(I+F)'=B4,
F=A'B-1
are taken into account, it follows from (4.4.14) that

1
LY | TP S——

By interchanging A and B, it follows immediately from A~' = A" 'BB"!
that

B

44.1 A7 <A™ -1 S—ﬂ——.

In particular, the residual estimate (4.4.13) leads to the bound

(44.17)  |x—x| < 1B7"] (%) r(X)=b— AX,
1 —||I — B 4| ’

where B~ ! is an approximate inverse to A with ||/ — B~ 'A| < L.

The estimates obtained up to this point show the significance of the
quantity cond(A) for determining the influence on the solution of changes in
the given data. These estimates give bounds on the error X — x, but the
evaluation of the bounds requires at least an approximate knowledge of the
inverse A~! to A. The estimates to be discussed next, due to Prager and
Oettli (1964), are based upon another principle and do not require any
knowledge of A~ 1.

The results are obtained through the following considerations:

Usually the given data A,, by of an equation system A, x = b, are inex-
act, being tainted, for example, by measurement errors AA, Ab. Hence, it is
reasonable to accept an approximate solution X to the system A, x = b, as
“correct” if X is the exact solution to a “neighboring” equation system

AX=b
with

(4.4.18) AeN={A]||A - A;| < A4}
be B:={b||b—by| <Ab)}.
The notation used here is
A = (o] ) where A = (o),
|b] = (|Bi]. .- |Bal)', where b= (By, ... B)",
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and the relation < between vectors and matrices is to be understood as
holding componentwise. Prager and Oettli prove:

(4.4.19) Theorem. Let AA > 0, Ab > 0, and let N, B be defined by (4.4.18).
Associated with any approximate solution X of the system Ay x = b, there is a
matrix A € A and a vector b € B satisfying

AX = b,
if and only if
|r(x)] < AA|X| + Ab,
where r(X):=by, — Ao X is the residual of X.
PROOF.
(1) We assume first that
Ax = b.
holds for some A € N, b € B. Then it follows from
A= Ay + 6A, where |34| < AA,
b=b, + db, where |6b| < Ab,

that
|F(®)| = |bo — ApX| = |b — b — (4 — 3A)X|
= | —0b + (3A)X| < |8b| + |64]|x|
< Ab + AA|X|.
(2) On the other hand, if
(4.4.20) |r(%)] < Ab + AA|X],

and if r and s stand for the vectors

= r®) = (prs )
s==Ab+ AA|X| >0, s=(6p ..., 0,),

dA=(0ay). b= | : ],
B,

then set

e

]
P ——
At Al
= -
[ I———

o= p; Ay sign(&;)/oi,
oB; == —p; AB;/o;, where p;jo;:=0if g;= 0.
From (4.4.20) it follows that |p;/o;| < 1, and consequently
A=A, +0A e, b=by,+0beB
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as well as the following for i=1,2, ..., n:

pi=PBi— Z“ij§j= (Aﬂi+ Z Aaijléjl)&
j=1 j=1 0;

—0B; + z 50‘.‘,‘5,',
=1

J

or
Zl(“.'j + d0;)E; = Bi + Op;,
i=
that is,
Ax=b,
which was to be shown. O

The criterion expressed in Theorem (4.4.19) permits us to draw conclu-
sions about the fitness of a solution from the smallness of its residual. For
example, if all components of A, and b, have the same relative accuracy e,

AA=c¢|Ao|, Ab=¢l|b,|,
then (4.4.19) is satisfied if
| Ao — bo| < é(lbo + | 4o| %)

From this inequality, the smallest ¢ can be computed for which a given x can
still be accepted as a useable solution.

4.5 Roundoff-Error Analysis for Gaussian
Elimination

In the discussion of methods for solving linear equations, the pivot selection
played only the following role: it guaranteed for any nonsingular matrix A4
that the algorithm would not terminate prematurely if some pivot element
happened to vanish. We will now show that the numerical behavior of the
equation-solving methods which have been covered depends upon the
choice of pivots. To illustrate this, we consider the following simple example:

x| _ 0.5
y BRD!
with the use of Gaussian elimination. The exact solution is x = 5000/9950 =

0.503 ..., y = 4950/9950 = 0.497 .... If the element a,, = 0.005 is taken as the pivot
in the first step, then we obtain

0.005 1{ix 0.5
T TR

Solve the system

(45.1)

0005 1
1 1
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using 2-place floating-point arithmetic. If the element a,, = 1 is taken as the pivot,
then 2-place floating-point arithmetic yields

L tiixyp |1
'0 1 [ y} B [0.5
In the second case, the accuracy of the result is considerably higher. This
could lead to the impression that the largest element in magnitude should be
chosen as a pivot from among the candidates in a column to get the best
numerical results. However, a moment’s thought shows that this cannot be

unconditionally true. If the first row of the equation system (4.5.1) is mul-
tiplied by 200, for example, the result is the system

-1

which has the same solution as (4.5.1). The element a,, = 1 is now just as
large as the element a,, = 1. However, the choice of a,, as pivot element
leads to the same inexact result as before. We have replaced the matrix A4 of
(45.1) by A = DA, where D is the diagonal matrix

200 O
0 1y

. y =050, x=050.

1

200
(4.52) R

D=

Obviously, we can also adjust the column norms of 4—i.e., replace A by
A = AD (where D is a diagonal matrix)without changing the solution x to
Ax = b in any essential way. If x is the solution to Ax = b,theny = D™ 'xis
the solution of Ay = (4D)(D~'x) = b. In general, we refer to a scaling of a
matrix 4 if A is replaced by D, AD,, where D,, D, are diagonal matrices.
The example shows that it is not reasonable to propose a particular choice of
pivots unless assumptions about the scaling of a matrix are made. Unfor-
tunately, no one has yet determined satisfactorily how to carry out scaling so
that partial pivot selection is numerically stable for any matrix A. Practical
experience, however, suggests the following scaling for partial pivoting:
Choose D, and D, so that

kgl‘aikl N i |G

j=1

holds approximately for all i, /= 1,2, ..., n in the matrix A = D, AD, . The
sum of the absolute values of the elements in the rows (and the columns) of
A should all have about the same magnitude. Such matrices are said to be
equilibrated. In general, it is quite difficult to determine D, and D, so that
D, AD, is equilibrated. Usually we must get by with the following: Let
D, =1, D, = diag(sy, ..., s,), where

1
S =

EpYSITAR
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then for A = D, AD,, it is true at least that

Y lag| =1 fori=1,2,....n
k=1

Now, instead of replacing 4 by 4, i.e., instead of actually carrying out the
transformation, we replace the rule for pivot selection instead in order to
avoid the explicit scaling of 4. The pivot selection for the jth elimination step
AU™D 5 49 s given by the following:

(4.5.3). Determine r = j so that
|a¥|s, = max|al/"V|s; # O,
iz

and take a¥~ ') as the pivot.

The example above shows that it is not sufficient, in general, to scale 4
prior to carrying out partial pivot selection by making the largest element in
absolute value within each row and each column have roughly the same
magnitude:

(4.5.4) max |a,| > max |a;| foralli,l=1,2,...,n
K i

For, if the scaling matrices

200 0
D‘=[0 1

10
o Da= [0 0.005]
are chosen, then the matrix 4 of our example (4.5.1) becomes

- 11
A=D,4D, = [1 0.005]'

The condition (4.5.4) is satisfied, but inexact answers will be produced, as
before, if a;; = 1 is used as a pivot.

We would like to make a detailed study of the effect of the rounding
errors which occur in Gaussian elimination or direct triangular decomposi-
tion (see Section 4.1). We assume that the rows of the n x n matrix A4 are
already so arranged that A4 has a triangular decomposition of the form
A= LR. Hence, L and R can be determined using the formulas of (4.1.12). In
fact, we only have to evaluate expressions of the form

)

b, =1l ¢ — a by —-- - an~1bn—1)
a,
which were analyzed in (1.4.4)-(1.4.11). Instead of the exact triangular de-

composition LR = 4, (4.1.12) shows that the use of floating-point arithmetic
will result in matrices L = (I;), R = () for which the residual F == (f;,) =
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A — LR is not zero in general. Since, according to (4.1.13), the jth partial
sums

j 3 -
t_lf{‘) = fl(a,»k - Z l;,rsk)
s=1
are exactly the elements of the matrix AY, which is produced instead of AY

of (4.1.6) from the jth step of Gaussian elimination in floating-point arith-
metic, the estimates (1.4.7) applied to (4.1.12) yield

i - eps i-1
[l = |an = Shia| <7 T(1a]+ 1G] |Ful) for k>
j=1 1 eps
4.5.5) i-1
eps . o
[l == 3] < 1t + Sl + 1l
P2 -
for k > i.
Further,
(4.5.6) Fa=ali" P fori<k,

since the first j + 1 rows of AY [or AY of (4.1.6)] do not change in the
subsequent elimination steps, and so they already agree with the correspond-
ing rows of R. We assume, in addition, that |I, | < 1 for all i, k (which is
satisfied, for example, when partial or complete pivoting is used). Setting
a;*=max ||, a= max a,
ik O<i<n—-1

it follows immediately from (4.5.5) and (4.5.6) that

If;kl = (a0+2a1+202+ +2ai_2+a,-_1)
<2(i—1)a1—%)%p§ for k > i,
(4.5.7)
€ps
| ful < —p-~ o5 (a0 + 280+ 4 20+ 20,

<2%a—P_ fork<i.
1 —eps

For the matrix F, then, the inequality

(000 ... 0 0 |

111 ... 1 1

eps |1 2 2 2 2

(4.538) Fl<2ap— <11 3 3 3 3
1 23 ... n—1 n—1
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holds, where | F| = (| fx|). If a has the same order of magnitude as a,, that
is, if the matrices AY do not grow too much, then the computed matrices LR
form the exact triangular decomposition of the matrix A — F, which differs
little from A. Gaussian elimination is stable in this case.

The value a can be estimated with the help of a, = max, , |a,|. For
partial pivot selection it can easily be shown that

Ay < 2ka0 ’

and hence that a < 2" 'a,. This bound is much too pessimistic in most
cases; however, it can be attained, for example, in forming the triangular
decomposition of the matrix

1 0 ... 0 1]
-1 1 ... 0
-1 -1 ... 0
A= : : Do
-1 -1 ... 01
-1 =1 ... 11
[ -1 -1 ... —1 1]

Better estimates hold for special types of matrices. For example in the case of
upper Hessenberg matrices, that is, matrices of the form

X .. .. X
M .

A= ,
0 X X

the bound a < (n— 1)a, can be shown. (Hessenberg matrices arise in
eigenvalue problems.)
For tridiagonal matrices

o B . 0
’y2 ‘. ‘.
A= | :
.. Bn
0 Vo Oy

it can even be shown that
a=max|a,| < 2a
k

holds for partial pivot selection. Hence, Gaussian elimination is quite
numerically stable in this case.
For complete pivot selection, Wilkinson (1965) has shown that

a1 < f(k)ay
with the function
f(k) :=kl/2[21 31/2 41/3 . kl/(k—l)]l/Z'
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This function grows relatively slowly with k:
[ 10 20 50 100
f(k)| 19 67 530 3300

Even this estimate is too pessimistic in practice. Up until now, no real matrix
has been found which fails to satisfy

a<(k+ag, k=12 ..n—1,

when complete pivot selection is used. This indicates that Gaussian elimin-
ation with complete pivot selection is usually a stable process. Despite this,
partial pivot selection is preferred in practice, for the most part, because:

(1) Complete pivot selection is more costly than partial pivot selection. (To
compute A, the maximum from among (n — i + 1)? elements must be
determined instead of n — i + 1 elements as in partial pivot selection.)

(2) Special structures in a matrix, i.e. the band structure of a tridiagonal
matrix, are destroyed in complete pivot selection.

If the weaker estimates (1.4.11) are used instead of (1.4.7), then the follow-
ing bounds replace those of (4.5.5) for the f;:

| ful < 1—n. eps[zj“”” | — |’ikl]»
~ k>. ki
< = | SR 1 | i1
or
eps
< _
(459) IFI < 7= e LI EIDIR] = 1R}
1 0
where D= 2
0 n

4.6 Roundoff Errors in Solving Triangular Systems

As a result of applying Gaussian elimination in floating-point arithmetic to
the matrix A, a lower triangular matrix L and an upper triangular matrix R
are obtained whose product LR approximately equals A. Solving the sytem
Ax = b is thereby reduced to solving the triangular systems

Ly=b, Rx=y.
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In this section we investigate the influence of roundoff errors on the solution
of such equation systems. If we use y to denote the solution obtained using
t-digit floating-point arithmetic, then the definition of y gives

(461) .;’r = “((—I—rl.‘-)l - l_r2.v2 - l_r,r—l.‘-)r—l + br)/z-r)
From (1.4.10), (1.4.11) it follows immediately that

- S| =P | Sl - 15 |
or
1 0
462) |b-Lil< P (Llp-nlsl  p=| 7
0 n

In other words, there exists a matrix AL satisfying

_ _ — eps —

4.6.3 L+ AL)y=b, AL|< ———(|L|D—=1I).

(463)  (L+ADy=b  |AL|< > (IL[D~])

Thus, the computed solution can be interpreted as the exact solution of a
slightly -changed problem, showing that the process of solving a triangular

system is stable. Similarly, the computed solution X of Rx = y is found to
satisfy the bound

n 0
I eps - - _ .
— s— y = . ,
P Re| <P CIRIE|R], ,
(4.6.4) 0 ]
(R+ARjx =3  |AR|<-— P _|R|E.

“1—n-eps

By combining the estimates (4.5.9), (4.6.3), and (4.6.4), we obtain the follow-
ing result (due to Sautter (1971)) for the approximate solution x produced
by floating-point arithmetic to the linear system Ax = b:

2n +1)-eps

— Ax| <
(463) |b—As| <Z[

|L||R||x| ifn-eps <3
Proor. Using the abbreviation ¢ :=eps/(1 — n - eps), it follows from (4.5.9),
(4.6.3) and (4.6.4) that
|b—Ax| = |b—(LR+ F)x| = | —Fx+b— L(y — AR %)
= |(—F + AL(R + AR) + L AR)x|
<d2(L|D~ D|R| + |L||R|E+€«(|L|D - I)|R|E]|X|.
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The (i, k) component of the matrix [...] appearing in the last line above
has the form

min(i. k) _
_Zl T2 =20+ n+1—k+«j—d;+n+1—k)|rl.
i<

5 U fori=

Y0 for i+

It is easily verified for all j < min(i, k), | < i, k < n, that

2 =2 +n+1—k+«j—38;+n+1-k)

<}2n—1+tn fj<i<gk,
Sl2n+e(n+1) ifj<k<i
<2n+2,

since n - eps < 3implies cn < 2n - eps < 1. This completes the proof of (4.6.5).

O

A comparison of (4.6.5) with the result (4.4.19) due to Oettli and Prager
(1964) shows, finally, that the computed solution x can be interpreted as the
exact solution of a slightly changed equation system, provided that the matrix
n|L||R| has the same order of magnitude as | 4|. In that case, computing
the solution via Gaussian elimination is a numerically stable algorithm.

4.7 Orthogonalization Techniques of
Householder and Gram-Schmidt

The methods discussed up to this point for solving a system of equations
4.7.1) Ax=b

consisted of multiplying (4.7.1) on the left by appropriate matrices P;,
j=1,..., n, so that the system obtained as the final outcome,

Ay = b

could be solved directly. The sensitivity of the result x to changes in the
arrays AY, bV of the intermediate systems

AV = b”’, (A“", b(j)) - PI(AU— 1), pu- 1))
is given by
cond(AY") = lub(AY) lub((AV") " 1).

If we denote the roundoff error incurred in the transition from
(AY=1, Y1) to (AY, bY) by &, then these roundoff errors are amplified
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by the factors cond(A4Y) in their effect on the final result x, and we have

n—1
léiﬂ < Z s(i) COI'ld(AU)),
I~ =

In the right-hand expression above, £'”’ stands for the error in the initial data
A, b. If there is an AY with

cond(4Y) > cond(A?),

then the sequence of computations is not numerically stable: The roundoff
error ¢ has a stronger influence on the final result than the initial error £©.
For this reason, it is important to choose the P; so that the condition
numbers cond(4Y’) do not grow. For condition numbers derived from an
arbitrary norm | x|, that is difficult to do. For the Euclidian norm

Ix] = /<
and its subordinate matrix norm

A"A
lub(4) = max x——ri
x#0 XX

’

however, the choice of transformations is more easily made. For this reason,
only the above norms will be used in the present section. If U is a unitary
matrix, U?U = I, then the above matrix norm satisfies
lub(A4) = lub(UU A) < lub(U¥) lub(UA) = lub(U A)
< lub(U) lub(A4) = lub(4);
hence |
lub(UA) = lub(A4),
and similarly lub(AU) = lub(A).
In particular, it follows that
cond(A4) = lub(A4) lub(A~') = cond(U A)

for unitary U. If the transformation matrices P; are chosen to be unitary,
then the condition numbers associated with the systems AYx = b do not
change (so they certainly don’t get worse). Furthermore, the matrices P;
should be chosen so that the matrices AY become simpler. As was suggested
by Householder, this can be accomplished in the following manner:

The unitary matrix P is chosen to be

P=1-2ww? wherew!w=1 weC"
This matrix is Hermitian:

Pr=1" — Qww? = I — 2ww! = P,
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unitary:

PP = PP = P? = (I — 2ww")(I — 2ww")
=1 —2ww" — 2ww" + dwwww
=1,

and therefore involutory:
Pr=1
If two vectors x, y satisfy
y = Px = x —2(wx)w,
then it follows that
(4.7.2) YWy = xHPHpPx = xx,
(4.7.3) xHy = xHpPx = (x¥Px)?

and x"y is real. We wish to determine a vector w, and thereby P, so that a
given

x=(Xg, ..., X,)"
is transformed into a multiple of the first coordinate vector e, :
ke, = Px.
From (4.7.2) it follows immediately that k satisfies
[k|? = |x]|* = x"x
and, since kx"e; must be real according to (4.7.3),
k= Fév, a=/x"x,
if x; = €| x, |. Hence, it follows from
Px = x — 2(wx)w = ke,

and the requirement w”w = 1 that

we X ker
Ix — ket ||
Now, since x; = €*|x, |,
lx —key || = ||x £ aeey || = \/|x; + o€ + |x, + - + | X2

~ el £ 0+ [+ T
In order that no cancellation may occur in the computation of |x, | + o, we
choose the sign in the definition of k to be

k= —ge™,
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which gives
474)  |x, —k|*= |x;+ 0P =0 + |x;||> = 0% + 20|x, | + |x, >
It follows that

[x — ke, ||? = 262 + 20| x|, 2wwf = 2—(§~-_-£e—1M.

Ix — ke, ||?
The matrix P = I — 2ww" can be written in the form
P=1— puu

with
" . .
o= [Y x| xy=e€"x4), k= —age®
i=1
e (|x,| + o)
(4.7.5) u=x—ke, = 2 ,
X

B=(a(c + |x4|)) "

A matrix 4 = 49 can be reduced step by step using these unitary “House-
holder matrices” P;,

AV = PjA(j— 1),
into an upper triangular matrix

Ty oo Typ
A"V =R= U
0 | .
To do this, the n x n unitary matrix P, is determined according to (4.7.5) so
that
P 1 a(o) = ke 1
where a{® stands for the first column of A©.
If the matrix AY~ " obtained after j — 1 steps has the form

(4.7.6)

[ x x| ox x ]
: : i1
I
0 X, x X D B
j=1) — | c e e e e e -
AP = ' 1 1 - |’
1 (- 1) j— 1) AU~
ay; a$, 0 4
0 : : : n—j+1
b :
i— 1 i~ 1
i pag Y iV
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then we determine the (n — j + 1) x (n — j + 1) unitary matrix P; according
to (4.7.5) so that

Pl ¢ 1=k eCrity,

ag~v 0

1
0

Using P, the desired n x n unitary matrix is constructed as

L, 01} ima

0 F)} n—j+1 -

After forming AY = P; AU~ 1), the elements a{? for i > j are annihilated, and
the rows in (4.7.6) above the horizontal dashed line remain unchanged. In
this way an upper triangular matrix

R:= A("_ 1)

is obtained after n — 1 steps.

It should be noticed, when applying Householder transformations in
practice, that the locations which are set to zero beneath the diagonal of 4%
can be used to store u, which contains the important information about the
transformation P. However, since the vector u which belongs to P ; contains
n —j + 1 components, while only n — j locations are set free in AY, it is
usual to store the diagonal elements of AY in a separate array d in order to
obtain enough space for u.

The transformation of a matrix by

D H
is carried out as follows:
ij(i—l) = AU-D _ ujygi with ,Vf’ - Bju?A(j—l);

that is, the vector y; is computed first, and then 4/~ ! is modified as indicated.

The following ALGOL program contains the essentials of the reduction of a
real matrix, stored in the array q, to triangular form using Householder
transformations:

for j:=1 step 1 until n do
begin
sigma :=0;
for i:=j step 1 until n do sigma = sigma + a[i, j]12;
if sigma = 0 then goto singular;
s:=d[j]=if a[j, j] < O then sqrt (sigma) else —sqrt (sigma);
beta:=1/(s x a[j, j] ~ sigma); a[j, j]==4d[j, j] — s;
for k:=j + 1 step 1 until n do
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begin
sum:=0;
for i == step 1 until n do
sum = sum + a[i, j] x ali, k];
sum *=beta x sum;
for i:=j step 1 until n do
ali, k]==ali, k] + a[i, j] x sum
end

end

The Householder reduction of a matrix to triangular form requires about
2n3/3 operations. In this process an n x n unitary matrix P = P, ... P, con-
sisting of Householder matrices P; and an n x n upper triangular matrix R
are determined so that

PA=R
or
(4.7.7) A=P 'R=QR
holds.

An upper triangular matrix R, with the property (4.7.7)that AR™! = Q is
a matrix with orthonormal columns, can also be produced directly by the
application of Gram-Schmidt orthogonalization to the columns a; of
A= (ay, ..., a,). The equation A = QR shows that the kth column g, of 4

k
aq = Zr,-kqi, k=1,...,n
i=1

is a linear combination of the vectors q,, ¢, - .., 4x, S0 that, conversely, g, is
a linear combination of the first k columns a;, ..., g, of A. The Gram-
Schmidt process determines the columns of Q and R recursively as follows:
Begin with

rig = ayl, qi'=ay/ryy.

If the orthonormal vectors gy, ..., gx- 1 and the elements r;; with j < k — 1 of

R are known, then the numbers ry,, ..., r,_; ; are determined so that the
vector
(4.7.8) by=ay —ruqy — = N 1,09k-1

is orthogonal to all g;, i=1, ...,k — 1.
Because

1 fori=j

: forl<ijg<k-—1,
0 otherwise or hJ

qi'q; =
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the conditions gi'b, = 0 lead immediately to

(4.79) rai=qla,,  i=1,... k-1

After ry, i < k — 1, and thereby b, have been determined, the quantities
(4.7.10) e = ||| a4 = by /rues

are computed, so that (4.7.8) is equivalent to

k
a = Z Fiadi,
i=1
and moreover

w1 fori=j,
%9 =10 otherwise
forall 1 <i,j<k.

As given above, the algorithm has a serious disadvantage: it is not numer-
ically stable if the columns of the matrix A are nearly linearly dependent. In
this case the vector b,, which is obtained from the formulas (4.7.8), (4.7.9)
instead of the vector b, (due to the influence of roundoff errors), is no longer
orthogonal to the vectors ¢, ..., g, _,. The slightest roundoff error incurred
in the determination of the r; in (4.7.9) destroys orthogonality to a greater
or lesser extent.

We will discuss this effect in the special case corresponding to k = 1 in
(4.7.8). Let two real vectors a and g be given, which we regard, for simplicity,
as normalized: |a| = |q|| = 1. This means that their scalar product
po=q a satisfies |po| < 1. We assume that |p,| < 1 holds, that is,aand q
are linearly independent. The vector

b=b(p)=a—pq

is orthogonal to g for p = p, . In general, the angle x(p) between b(p) and q
satisfies

T T
()= _4ablp) _qa-p
10)=008 20D = o)} = Ta = pall
a(po)=n/2,  [(po)=0.
Differentiating with respect to p, we find

-1 -1

f (Po) = ”a _ poql] = \/T— p‘z) )
1
o)==
0

since

la - poq|® =a’a—2poa"q + piq'q=1-pj.
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Therefore, to a first approximation, we have

m Ap
2po +Apo) =5 + ”——rlo—pz
— Fo

for Ap, small. The closer |p,| lies to 1, i.c., the more linearly dependent a
and q are, the more the orthogonality between q and b(p) is destroyed by
even tiny errors Ap,, in particular by the roundoff errors which occur in
computing p, = q"a.

Since it is precisely the orthogonality of the vectors g, that is essential to
the process, the following trick is used in practice. The vectors b, which are
obtained instead of the exact b, from the evaluation of (4.7.8), (4.7.9) are
subjected to a “ reorthogonalization ”. That is, scalars Ar;, and a vector b,
are computed from

by=b— Aryq, — — Arc-y Gi-1s
where
Ar, =q'bh,, i=1,...,k—1,
so that in exact arithmetic b7q; =0, i=1, ..., k — 1. Since b, was at least

approximately orthogonal to the g;, the Ar; are small, and according to the
theory just given, the roundoff errors which are made in the computation of
the Ar, have only a minor influence on the orthogonality of b, and g;. This
means that the vector

qi *= Bk/fkk’ Pl = llEk ”

will be orthogonal within machine precision to the already known vectors
41> ---» qx- ;- The values r; which have been found by evaluating (4.7.9) are
corrected appropriately:

P =Ty + Arg.

Clearly, reorthogonalization requires twice as much computing effort as the
straightforward Gram-Schmidt process.

4.8 Data Fitting

In many scientific observations, one is concerned with determining the
values of certain constants

Xis X2, 000y X

.y Xp.

Often, however, it is exceedingly difficult or impossible to measure the quan-
tities x; directly. In such cases, the following indirect method is used: instead
of observing the x;, another, more easily measurable quantity y is sampled,
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which depends in a known way on the x; and on further controllable “ exper-
imental conditions ”, which we symbolize by z:

y —_—f(Z; Xq, ones X,,).

In order to determine the x;, experiments are carried out under m different
conditions =y, ..., z,,, and the corresponding results

(4.8.0.1) Ve =1 (23 X1s -0 X), k=1,2,....m,

are measured. Values for x, ..., x, are sought so that the equations (4.8.0.1)
are satisfied. In general, of course, at least m experiments, m > n, must be
carried out in order that the x; may be uniquely determined. If m > n,
however, the equations (4.8.0.1) form an overdetermined system for the
unknown parameters x,, ..., X,, which does not usually have a solution
because the observed quantities y; are perturbed by measurement errors.
Consequently, instead of finding an exact solution to (4.8.0.1), the problem
becomes one of finding a “best possible solution”. Such a solution to
(4.8.0.1) is taken to mean a set of values for the unknown parameters for
which the expression

™M=

(4.802) W= Alxrs - X))

k

1

or the expression

™Mz

(4.8.0.3) B ST ]

k=1

is minimized. Here we have denoted f(z,; x4, ..., X,) by fi(xq, ..., X,).

In the first case, the Euclidian norm of the residuals is minimized, and we
are presented with a fitting problem of the special type studied by Gauss (in
his “method of least squares”). In mathematical statistics [e.g. see Guest
(1961), Seber (1977), or Grossmann (1969)] it is shown that the “least-
squares solution ” has particularly simple statistical properties. It is the most
reasonable point to determine if the errors in the measurements are indepen-
dent and normally distributed. More recently, however, points x which mini-
mize the norm (4.8.0.3) of the residuals have been considered in cases where
the measurement errors are subject to occasional anomalies. Since the com-
putation of the best solution x is more difficult in this case than in the
method of least squares, we will not pursue this matter.

If the functions f,(x,, ..., x,) have continuous partial derivatives in all of
the variables x;, then we can readily give a necessary condition for
x = (xy, ..., X,)" to minimize (4.8.0.2):

a m
(4.8.0.4) o Y = filxps -, X)) =0, i=1,...,n
Xi k=1

These are the normal equations for x.
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An important special case, the linear least-squares problem, is obtained if
the functions fi(x,, ..., x,) are linear in the x;. In this case there isanm x n
matrix A with

Si(xq, s x,)
fm(xl’ s X,,)

In this case the normal equations reduce to a linear system

grad,((y — Ax)T(y — Ax))=24TAx — 24Ty =0,

= Ax.

or
(4.8.0.5) ATAx = ATy.

We will concern ourselves in the following sections (4.8.1-4.8.3), with
methods for solving the linear problem, and in particular, we will show that
more numerically stable methods exist for finding the solution than by
means of the normal equations.

Least-squares problems are studied in more detail in Bjorck (1990) and the
book by Lawson and Hanson (1974), which also contains FORTRAN prograims;
ALGOL programs are found in Wilkinson and Reinsch (1971).

48.1 Linear Least Squares. The Normal Equations
In the following sections | x || will always denote the Euclidian norm /x"x.
Let an m x n matrix A and a vector y € R™ be given, and let

(@8.1.1) Iy — Ax]? = (y - 4x)(y — Ax)

be minimized as a function of x. We want to show that x € R" is a solution of
the normal equations

(48.1.2) ATAx = ATy

if and only if x is also a minimum point for (4.8.1.1). We have the following:

(4.8.1.3) Theorem. The linear least-squares problem

min |}y — Ax]|

xeR"
has at least one minimum point x,. If x, is another minimum point, then
Axy = Ax,. The residual r ==y — Ax, is uniquely determined and satisfies the

equation A"r = 0. Every minimum point x, is also a solution of the normal
equations (4.8.1.2) and conversely.

PrOOF. Let L = R™ be the linear subspace

L={Ax|x e R}
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which is spanned by the columns of A, and let I' be the orthogonal
complement

L={r|r"z=0 forallze L}
={r|r'A=0}.
Because R™ = L @ L, the vector y € R™ can be written uniquely in the form

(4.8.1.4) y=s+r, selL, rel,

and there is at least one x, with Ax, = s. Because A"r = 0, x, satisfies
ATy = ATs = AT Ax,,
that is, x, is a solution of the normal equations. Conversely, each solution x,
of the normal equations corresponds to a representation (4.8.1.4):
y=s+r, §=Ax;, r=y—Ax,, seL, rel.
Because this representation is unique, it follows that Ax, = Ax; for all

solutions x,, x; of the normal equations. Further, each solution x, of the
normal equations is a minimum point for the problem

min||y — Ax|.

xeRn
To see this, let x be arbitrary, and set
z = Ax — Ax,, r=y— Ax,.
Then, since r’z = 0,
ly = Ax||* = |lr = 2> = [r* + 2] > Ir]* = |y — Axo |%,

that is, x, is a minimum point. This establishes Theorem (4.8.1.3). O

If the columns of A are linearly independent, that is, if x # 0 implies
Ax # 0, then the matrix A”A4 is nonsingular (and positive definite). If this
were not the case, there would exist an x # 0 satisfying A”Ax = 0, from
which

0= x"TATAx = || Ax|?
would yield a contradiction, since Ax # 0. Therefore the normal equations
ATAx = ATy

have a unique solution x = (474)~ ' ATy, which can be computed using the
methods of Section 4.3 (that is, using the Cholesky factorization of A7 A).
However, we will see in the following sections that there are more numer-
ically stable ways of solving the linear least squares problem.

We digress here to go briefly into the statistical meaning of the matrix
(ATA)™!. To do this, we assume that the components y;, i= 1, ..., m, are
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independent, normally distributed random variables having y; as means and
all having the same variance o?:

E[y.-] = Hi;

_ _ _ 10.2 for i= k9
E[(i — )y — ] = |0 otherwise.

If we set u:=(u,, ..., 4n)", then the above can be expressed as

(48.15) Epl=p  Ely—p)y—w)"]=0L

The covariance matrix of the random vector y is ¢?I. The optimum
x = (ATA)"*ATy of the least-squares problem is also a random vector,
having mean

E[x] = E[(ATA)"'ATy]
= (ATA) T ATE[Y]
— (ATA)-IAT#,
and covariance matrix
E[(x — E(x))(x — E(x))"] = E[(ATA)*AT(y — p)(y — w) A(A7A4)" ]
(ATA) ATE[(y — W)y — p)TJA(ATA)"?
c?(ATA)" L.

]

4.8.2 The Use of Orthogonalization in Solving
Linear Least-Squares Problems

The problem of determining an x € R* which minimizes
ly—Ax| (4€ M(m,n), m>=n)

can be solved using the orthogonalization techniques discussed in Section
4. Let the matrix A = A” and the vector y = y© be transformed by a
sequence of Householder transformations P;, A? = P; 44~ 1,y = P, yti-1),
The final matrix A™ has the form

n

R1} » TSP
(4.82.1) AW = |.. with R = o],
0_} m—n 0 Ton
since m > n. Let the vector h:= y™ be partitioned correspondingly:
(4822) h= :‘] hyeR", h,eR" ™"
2
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The matrix P = P, ... P,, being the product of unitary matrices, is unitary
itself:

PP =P¥. . PipP ... P, =1,
and satisfies

A™=PA, h=Py.
Unitary transformations leave the norm ||u| of a vector u invariant (|| Pu|| =
u

HpHp, — [yfy = ), so
ly — Ax| = [|P(y = Ax)|| = |y — A”x].
However, from (4.8.2.1) and (4.8.2.2), the vector ™ — A®x has the structure

h; — Rx }n
n_ Ay = [ 1 ]
y( hz }m—n :

Hence ||y — Ax|| is minimized if x is chosen so that

(4.82.3) h, = Rx.
The matrix R has an inverse R~ ! if and only if the columns a, ..., a, of A are
linearly independent. Az = 0 for z # 0 is equivalent to
PAz=0
and therefore to
Rz=0.
If we assume that the columns of A are linearly independent, then
h; = Rx,

which is a triangular system, can be solved uniquely for x. This x is,
moreover, the unique minimum point for the given least-squares problem.
(If the columns of A4, and with them the columns of R, are linearly depen-
dent, then, although the value of min, ||y — Az| is uniquely determined,
there are many minimum points x).

The residual ||y — Ax|| is seen to be

(4.82.4) Iy — Ax|| = ||, .

We conclude by mentioning that instead of using unitary transforma-
tions, the Gram-Schmidt technique with reorthogonalization can be used to
obtain the solution, as should be evident.

4.8.3 The Condition of the Linear Least-Squares Problem

We begin this section by investigating how a minimum point x for the linear
least-squares problem

(483.1) min |y — Ax|
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changes if the matrix A and the vector y are perturbed. We assume that the
columns of A are linearly independent. If the matrix A is replaced by A + B,
and y is replaced by y + Ay, then the solution x = (474)™ 4Ty of (4.8.3.1)
changes to

x + Ax = ((A + B)"(A + B))" (4 + B)"(y + Ay).

If B is small relative to A, then ((4 + B)"(A + B))™ ! exists and satisfies, to a
first approximation,

((A+ B)(A+ B))™* = (ATA(I + (A"A)"'[A"B + B"A]))!
= (I — (ATA)"'[ATB + BTA])(ATA)™ 1.

[To a first approximation, (I + F)™! = I — F if the matrix F is “small”
relative to I.] Thus it follows that

x + Ax = (ATA) 'ATy — (ATA) '[A"B + BTA)(ATA) ATy
(4832) - .
+ (ATA)"'BTy + (ATA) AT Ay.

Noting that
x=(ATA) ATy
and introducing the residual
r=y— Ax,
it follows immediately from (4.8.3.2) that

Ax = —(ATA)"*A"Bx + (ATA)"'BTr + (ATA) AT Ay.

Therefore, for the Euclidian norm ||-|| and the associated matrix norm lub,
. _ lub(B)
T 1 4T
|Ax| < lub((ATA4) A )lub(A)—lub(A) [lx]|
- lub(BT) |||
T 1 Ty2
(48.3.3) + lub((A"A4)" 1) lub(A") Tub(AT) ub(AT)

_ vl Ayl
+ lub((AT4) ' A7) lub(4); I L
“iab(a) o]
[Observe that the definition given in (4.4.8) for lub makes sense even for
nonsquare matrices.] This approximate bound can be simplified. According

to the results of Section 4.8.2, a unitary matrix P and an upper triangular
matrix R can be found such that

pas[t], aerrft)
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and it follows that
A"A=R'R,
(4.8.3.4) (ATA)"' = R"YR")" Y,
(ATA) AT = (R, 0)P.
If it is observed that
lub(CT) = lub(C),
lub(PC) = lub(CP) = lub(C)

holds for the Euclidian norm, where P is unitary, then (4.8.3.3) and (4.8.3.4)
imply

o] o)+ cond(Ry Lo entE)
W < cond(R) lub(A) + cond(R) lub(A4)| x| lub(A4)
(4.8.3.5) Iyl Ay]
+ cond(R)WW'

The second term of this bound dominates the first term if

cond(R) ||| B

(4.8.3.6) x| < ub(d) = lub(R™1) ||r|.

But x = (4"4)"'A"y, and therefore, according to (4.8.3.4),

x = (R™1, 0)Py.
If Py is partitioned accordingly,
h

o=
it follows that
(4.8.3.7) x=R"1'h,
and hence
(4.8.3.8) x| < lub(R™1) |jhy ||

Now, however, from (4.8.3.7),
R 0
Pr=P(y — Ax)= Py — [O]X = [hz].

From |y|
and (4.8.3.8),

2= Pyll* = Il 1* + Nhe |2 = Ay 2 + [ Prl® = [ay 1 + | r?

Il < Tub(R™1)* (fly)1* = [I7]1%).
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The condition (4.8.3.6) is satisfied, therefore, if the relationship

b(R™H)* (lyl|* = frl*) < lub(R™") |jr?
holds, which is equivalent to the easily verified inequality
(4.83.9) Fylz < el

If the above holds, then the second term in (4.8.3.5) dominates the first.
Furthermore, if cond(R) > 1, then the linear least-squares problem is very
badly conditioned. Finally, the influence of ||Ay||/||y| will dominate the
influence of lub(B)/lub(A4) in (4.8.3.5) if

(4.8.3.10) [yl = lub(4) |x|

holds.

In summary, the linear least-squares problem becomes more strongly ill
conditioned as cond(R) increases, or as either of the inequalities (4.8.3.6)
[alternatively (4.8.3.9)] or (4.8.3.10) is more nearly satisfied.

If the minimum point x for the linear least-squares problem is found
using the orthogonalization method described in (4.8.2), then in exact arith-
metic, a unitary matrix P (consisting of a product of Householder matrices),
an upper triangular matrix R, a vector h” = (h{, h), and the solution x all
satisfying

R
0

are produced. Using floating-point arithmetic with relative machine preci-
sion eps, an exactly unitary matrix will not be obtained, nor will R, h, x
exactly satisfy (4.8.3.11). Wilkinson (1965) has shown, however, that there
exist a unitary matrix P’, matrices A4 and AR, and a vector Ay such that

lub(P" — P) < f(m) eps,

(483.11) PA =

], h = Py, Rx=h,

P(A+ AA)=

R
0], lub(AA4) < f(m) eps lub(A),
P(y+Ay)=h [Ay| < f(m)eps ],
(R+ AR)x=h,,  lub(AR)< f(m)eps lub(R).
In these relations f(m) is a slowly growing function of m, roughly

fm) = O(m).
Up to terms of higher order

lub(R) = lub(4),

and therefore, since

AR
F::AA+P7H[ 0 ],
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it also follows that

P(A+ F)=

R + AR
0

l, lub(F) < 2f(m) eps lub(A).

In other words, the computed solution x can be interpreted as an exact
minimum point of the following linear least-squares problem:

(4.83.12) min ||(y + Ay) — (4 + F)z|,

wherein the matrix 4 + F and the right-hand-side vector y + Ay differ only
slightly from A and y respectively. The technique of orthogonalization is,
therefore, numerically stable.
If, on the other hand, one computes the solution x by way of the normal
equations
ATAx = ATy,

then the situation is quite different. It is known from Wilkinson’s (1965)
estimates (see also Section 4.5) that a solution vector X is obtained which
satisfies

(483.13) (A"A+G)x=A4"y,  Iub(G) < g(n) eps lub(A" A),

when floating point computation with the relative machine precision eps is
used (even under the assumption that A"y and 4" A are computed exactly).
If x = (A"4)"'A"y is the exact solution, then (4.4.15) shows that

X — x| r . lub(G)
I A Tub(474)

lub(G)
lub(47 A)
to a first approximation. The roundoff errors, represented here as the matrix
G, are amplified by the factor cond(R)?>.

This shows that the use of the normal equations is not numerically stable
if the first term dominates in (4.8.3.5). Another situation holds if the second
term dominates. If ||r|/(lub(4) ||x||) > 1, for example, then the use of the
normal equations will be numerically stable and will yield results which

are comparable to those obtained through the use of orthogonal
transformations.

< cond(A
(4.8.3.14)
= cond(R)?

EXAMPLE 1 (Lduchli). For the 6 x 5 matrix
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it follows that

1+¢ 1 1 1 1
1 1+ £? 1 1 1
ATA = 1 1 1+ &2 1 1
1 1 1 1+¢2 1
1 1 1 1 1+6

If £ = 0.5 x 1073, then 10-place decimal arithmetic yields

11111
11111
fliiA”4)=]1 1 1 1 1
11111
11111

since 2 =025 x 107 '°. This matrix has rank 1 and has no inverse. The normal
equations cannot be solved, whereas the orthogonalization technique can be applied
without difficulty. [Note for 474 that cond(A"A4) = cond(R)* = (5 + ¢?)/e2]

ExaMPLE 2. The following example is intended to offer a computational comparison
between the two methods which have been discussed for the linear least-squares
problem.

(4.8.3.12) shows that, for the solution of a least-squares problem obtained using
orthogonal transformations, the approximate bound given by (4.8.3.5) holds with
B = F and

lub(B) < 2f (m) eps lub(A).

(4.8.3.14) shows that the solution obtained directly from the normal equations
satisfies a somewhat different bound:

(A4 + G)(x + Ax)= ATy + Ab
where |[Ab| < eps lub(A4) |y|. that is,

" AX "normul 2

which holds because of (4.4.12) and (4.4.15).
Let the fundamental relationship

@) ot

1 1 1 .
(4.8.3.16) y(s)=x, 3 + X, . + X, 3 withx; =x, =x3=1

be given. A series of observed values [computed from (4.8.3.16)]

{si> Y(si)i=1.....10

were produced on a machine having eps = 10711,
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(a) Determine x4, X,, X3 from the data {s;, y;}. If exact function values y; = y(s;) are
used, then the residual will satisfy

r(x)=0.

The following table presents some computational results for this example. The
size of the errors |Ax|nn from the orthogonalization method and ||Ax||normal
from the normal equations are shown together with a lower bound for the
condition number of R. The example was solved using s; =so + i, i=1,..., 10
for a number of values of sy:

So CODd(R) “AY " orth " Ax “ normal

10 6.6 x 10° 80 x 1071° 88 x 1077

50 1.3 x 10° 64 x 1077 82 x 1073
100 1.7 x 107 33x10°° 42 x 1072
150 8.0 x 107 18 x 10°° 69 x 107!
200 2.5 x 108 18 x 1073 2.7 x 10°

(b) We introduce a perturbation into the y;, replacing y by y + Av, where ¢ is chosen
so that A"r =0. This means that, in theory, the solution should remain
unchanged:

(ATA)x = AT(y + &r) = ATy
Now the residual satisfies
HX)=y+ Ar — Ax = Ar, e R

The following table presents the errors Ax, as before, and the norm of the
residual ||r(x)|| together with the corresponding values of 4:

So = 10,
r = (0.1331, —0.5184, 0.6591, —0.2744, 0, 0, 0, 0, 0, 0)",
lub(4) X 0.22,  eps = 10711,

A ()l 1A ortn 1A normar

0 0 8 x 10710 88 x 1077
10°¢ 9 x 1077 9.5 x 107° 8.8 x 1077
10°* 9x10°° 62 x 1071° 46 x 1077
102 9x 103 9.1 x 10°° 13 x10°°
10° 9 x 107! 6.1 x 1077 8.8 x 1077
10*2 9 x 10} 57 %1073 9.1 x 107°
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4.8.4 Nonlinear Least-Squares Problems

Nonlinear data-fitting problems can generally be solved only by iteration,
as for instance the problem given in (4.8.0.2) of determining a point x* =
(x%, ..., x*)T for given functions fi(x) = fi(xy, ..., x,) and numbers y,, k =

1,...,m,
Y1 filxg, o x,)
y= |7 1= z
ym fm(xl’ ey Xn)

which minimizes
Hy _f(-")”z = Z e = flxgs - s -\'n))z-
k=1

For example, linearization techniques (see Section 5.1) can be used to reduce
this problem to a sequence of linear least squares problems. If each f, is
continuously differentiable, and if

ch .
éx, éx,
Df(&)=] : :
Cfm . Cfm
| Oxy CxXp | <=

represents the Jacobian matrix at the point x = ¢, then
TR)=F )+ Df ()& = x)+ h lh]

holds. If x is close to the minimum point of the nonlinear least-squares
problem, then the solution X of the linear least-squares problem

min ||y — f(x) — Df (x)(z — x)|? = [[r(x) = Df (x)(* — x)||?,
(484.1) ze R
r(x)=y — f(x),
will often be still closer than x; that is,
ly = ®N* <y = f&N*

This relation is not always true in the form given. However, it can be shown
that the direction

= o(||x — )

s=35(x)==Xx—x

satisfies the following:

There is a A > 0 such that the function

@)=y = f(x + )|
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is strictly monotone decreasing for all 0 < t < A. In particular
()= lly —f(x+ )| <@©0) = [y — f ()|

PROOF. ¢ is a continuously differentiable function of t and satisfies
d .
90)= [y = flx + )" (v =[x + 75))]
=0

= =2(Df (x)s)"(y — f(x)) = —2(Df (x)s) r(x).
Now, by the definition of X, s = (X — x) is a solution to the normal equations
(48.42) Df (x)"Df (x)s = Df (x)"r(x),

of the linear least-squares problem (4.8.4.1). It follows immediately from
(4.8.4.2) that

IDf (x)s||> = s"Df (x)"Df (x)s = (Df (x)s)"r(x)
and therefore
¢'(0) = =2|Df (x)s|* <O,

so long as rank Df(x) =n and s # 0. The existence of a A > 0 satisfying
¢'(t) < 0 for 0 < t < 4 is a result of continuity, from which observation the
assertion follows. O

This result suggests the following algorithm, called the Gauss—Newton
algorithm, for the iterative solution of nonlinear least-squares problems.
Beginning with an initial point x*, determine successive approximations
X i=1,2, ..., as follows:

(1) For x compute a minimum point s’ for the linear least-squares

problem
min ”’.(_\.(i\) _ Df(-\'m)s”Z-
seR"
(2) Let o(z)= ||y — f(x" + 5s")| %, and further, let k be the smallest integer
k = 0 with

?(27%) < 0(0) = [Ir(x"M)].
(3) Define xt+ 1= 4 27k,

In Section 5.4 we will study the convergence of algorithms which are
closely related to the process described here.

4.8.5 The Pseudoinverse of a Matrix

For any arbitrary (complex) m x n matrix A there is an n x m matrix A",
the so-called pseudoinverse (or Moore-Penrose inverse). It is associated with
A in a natural fashion and agrees with the inverse A~! of 4 in case m =n
and A is nonsingular.
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Consider the range space R(4) and the null space N(A4) of 4,
R(A)={Ax e C™|x e C"},
N(A)={x e C"|Ax =0},
together with their orthogonal complement spaces R(A)' < C™,

N(A)* = C". Further, let P be the n x n matrix which projects C" onto
N(A)*, and let P be the m x m matrix which projects C™ onto R(A):

P=P!=P2 Px=0 < xeN(A)
P:F’”:ﬁz, Py=y had ,VER(A)

For each y € R(A) there is a uniquely determined x, € N(A)" satisfying
Ax; =y, ie, there is a well-defined mapping f: R(4) — C" with

Af(y)=y, f(y)e N(A)" for all y € R(A).

For, given ye R(A), there is an x which satisfies y = Ax; hence
y=A(Px + (I — P)x) = APx = Ax,, where x,= Pxe N(A)", since
(I — P)x € N(A). Further, if x;, x, € N(A)', Ax, = Ax,, it follows that

Xy — X, € N(A) n N(A)* = {0},

which implies that x; = x, . f is obviously linear.

The composite mapping f P:y e C™ - f(Py) e C" is well defined and
linear, since Py € R(A); hence it is represented by an n x m matrix, which is
precisely A, the pseudoinverse of 4; A*y:=f(P(y))forall y e C". A* has
the following properties:

(4.8.5.1) Theorem. Let A be an m x n matrix. The pseudoinverse A is an
n X m matrix satisfying:

(1) A™ A = P is the orthogonal projector P: C" — N(A)" and AA* = P is the
orthogonal projector P: C™ — R(A).
(2) The following formulas hold:
(a) ATA= (A" A),
(b) AA* = (AA™),
() AA*A =4,
(d) A*A4* = A"
PRrROOF. According to the definition of 4™,
A*Ax = f(PAx)=f(Ax) = Px for all x,

so that A*A = P. Since P" = P, (4.8.5.1.2a) is satisfied. Further, from the
definition of f,

AA*y= A(f(Py))= Py

for all y e C™; hence AA* = P. Since P" = P, (4.8.5.1.2b) follows too.
Finally, for all x € C"

(AA*)Ax = PAx = Ax
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according to the definition of P, and for all y € C™
A*(AAY )y = A*Py=f(P?y)= A%y,
hence, (4.8.5.1.2¢c, 2d) hold. O

The properties (2a-d) of (4.8.5.1) uniquely characterize A™:

(4.8.5.2) Theorem. If Z is a matrix satisfying

(@) ZA = (ZA)",
(b') AZ = (AZ)",
(c) AZA= A,
d) ZAZ = Z,

then Z = A*.
ProoOF. From (a)-(d) and (a’)}-(d") we have the following chain of equalities:
Z=ZAZ=Z(AA* A)A*(AA*A)Z  from (c), (d), (@)
= (AHZH AN AYT)AT (AT AR ZE AY)  from (a), ('), (b), (V')

= (AHA+")A* (A" AY) from (c)
= (A*A)A* (AA") from (a), (b)
=AY AA* = A* from (d). O

We note the following

(4.8.5.3) Corollary. For all matrices A,
A++=A, (A+)H=(AH)+.
This holds because Z := A [respectively Z = (A" )”] has the properties of

(A*)* [respectively (47)*] in (4.8.5.2).
An elegant representation of the solution to the least-squares problem

min || Ax — y|,
can be given with the aid of the pseudoinverse A*:

(4.8.5.4) Theorem. The vector X = A"y satisfies:

(@) || Ax =yl > ||A):c =y for all x ecC. i
(b) [[Ax = yll2 = || 4% — yll2 and x # x imply |x||> > ||| .

In other words, X = A%y is that minimum point of the least squares problem
which has the smallest Euclidean norm, in the event that the problem does
not have a unique minimum point.
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ProOF. From (4.8.5.1), AA™ is the orthogonal projector on R(A); hence, for
all x € C" it follows that

AX—y=u—uv,
u=A(x — A*y)e R(A), v=(I - AA*)y =y — Ax e R(4)".
Consequently, for all x e C"
I Ax = y13 = full3 + Ioll3 > )2 = A% -y,
and ||Ax — y||, = | 4x — y||, holds precisely if
Ax = AAYy.
Now, A" A is the projector on N(A)'. Therefore, for all x such that
Ax = AA™y,
X=u, +v;, u=AYAx=A"AA%y= A%y=xe N(A),
vy =x — x € N(A4),

from which it follows that |x|3 > ||x||3 for all x € C" satisfying x — x # 0
and [|Ax -y, = | 4% — y|2. O

4.9 Modification Techniques for Matrix
Decompositions

Given any n x nmatrix A, Gaussian elimination (see Section 4.1.7) produces
an n x n upper triangular matrix R and a nonsingular n x n matrix
F=G,_,P,_,... G, Py, a product of Frobenius matrices G; and permuta-
tion matrices P;, which satisfy

FA=R.
Alternatively, the orthogonalization algorithms of Section 4.7 produce n x n

unitary matrices P, Q and an upper triangular matrix R (different from the
one above) for which

PA=R or A=QR.
[compare with (4.7.7)]. These algorithms can also be applied to rectangular
m x n matrices A, m > n. Then they produce nonsingular m x n matrices F

(alternatively m x m unitary matrices P or m x n matrices Q with orthonor-
mal columns) and n x n upper triangular matrices R satisfying

(49.1) FA= [g] .
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or
R i H
(4.9.2a) pa=| |, P'P=PP"=1,
(4.9.2b) A=0QR, Q"Q0=1,.
For m = n, these decompositions were seen to be useful in that they reduced

the problem of solving the equation systems

(49.3) Ax=y or A'x=y

to a process of solving triangular systems and carrying out matrix multipli-
cations. When m > n, the orthogonal decompositions mentioned in (4.9.2)
permit the solutions X of linear least-squares problems to be obtained in a

similar manner:
Rl _»
0 N y

Further, these techniques offer an efficient way of obtaining the solutions to
linear-equation problems (4.9.3) or to least-squares problems (4.9.4) in
which a single matrix A4 is given with a number of right-hand sides y.

Frequently, a problem involving a matrix 4 is given and solved, following
which a “simple” change 4 — A4 is made. Clearly it would be desirable to
determine a decomposition (4.9.1) or (4.9.2) of A, starting with the corre-
sponding decomposition of A, in some less expensive way than by using the
algorithms in Sections 4.1 or 4.7. For certain simple changes this is possible.
We will consider:

(494)  min ||Ax — y| = min . Rx=Q"y.

(1) the change of a row or column of A4,
(2) the deletion of a column of A,

(3) the addition of a column to A4,

(4) the addition of a row to A4,

(5) the deletion of a row of A,

where A is an m x n matrix, m > n. [See Gill, Golub, Murray, and Saunders
(1974) and Daniel, Gragg, Kaufman, and Stewart (1976) for a more detailed
description of modification techniques for matrix decompositions.]

Our principal tool for devising modification techniques will be certain
simple elimination matrices E;;. These are nonsingular matrices of order m
which differ from the identity matrix only in columns i and j and have the
following form:



49 Modification Techniques for Matrix Decompositions
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“Jj

1

A matrix multiplication y = E;; x changes only components x; and x; of the

vector x = (xy, ..., X,,)7 € R™:
Yi= ax;
Y=g
Vi = Xg

Given a vector x and indices i # j,

E::

and thereby E;

jo

+ bx;,
+ dx;,
for k + 1, j.

the 2 x 2 matrix

|

a b
c d

can be chosen in several ways so that the jth component y;

of the result y = E;; x vanishes and so that E;; is nonsingular:

)

For numerical reasons E should

Yi
0

also be chosen so that the condition

number cond(E;;) is not too large. The simplest possibility, which finds

application in decompositions of

the type (4.9.1), is to construct E as a

Gaussian elimination of a certain type [see (4.1.8)]:

1
0

0
1

1
—X;/x;
0 1
1 —x/x;

0

(49.5) ,

iij=0,
l if |x;| 2]x]>0,

]« if | x| < |x;].
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In the case of orthogonal decompositions (4.9.2) we choose E, and thereby
E;;, to be the unitary matrices known as Givens matrices. One possible form
such a matrix may take is given by the following:

(4.9.6) E= lz zl c=cos ¢, s:=sin .
E and E;; are Hermitian and unitary, and satisfy det(E) = — 1. Since E is

unitary, it follows immediately from the condition

N
s —cllx; 0
that y, =k = im which can be satisfied by

c=1 s=0 ifx;=x;=0
or alternatively, if y:=max{|x;|, | x;|} >0, by

c=x;/k,  s=xjlk.

|k| is to be computed as

[k = i/ T (5,0
and the sign of k is, for the moment, arbitrary. The computation of |k| in
this form avoids problems which would arise from exponent overflow or

underflow given extreme values for the components x; and x;. On numerical
grounds the sign of k will be chosen according to

1 ify; =0,
-1 ifx; <0,
so that the computation of the auxiliary value

vi=g/(1 + c)

can take place without cancellation. Using v, the significant components
z;, z; of the transformation z:= E;;u of the vector u € R” can be computed
somewhat more efficiently (in which a multiplication is replaced by an addi-
tion) as follows:

k= |k| sign(x). sign(x)=|

z; = cu; + suj,
zy=w(u; + ;) — uj.

The type of matrix E shown in (4.9.6), together with its associated E;;, is
known as a Givens reflection. We can just as easily use a matrix E of the form
- c s
E= ¢=cos ¢, §=sing,
l_ S C], @ @

which, together with its associated E;;, is known as a Givens rotation. In this
case E and E;; are orthogonal matrices which describe a rotation of R™
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about the origin through the angle ¢ in the i-j plane; det(E) = 1. We will
present the following material, however, only in terms of Givens reflections.
Since modification techniques for the decomposition (4.9.1) differ from
those for (4.9.2a) only in that, in place of Givens matrices (4.9.6), correspond-
ing elimination matrices E of type (4.9.5) are used, we will only study the
orthogonal factorization (4.9.2). The techniques for (4.9.2b) are similar to,
but more complicated than, those for (4.9.2a). Consequently, for simplicity’s
sake, we will restrict our attention to (4.9.2a). The corresponding discussion
for (4.9.2b) can be found in Daniel, Gragg, Kaufman, and Stewart (1976).
In the following let 4 be a real m x n matrix with m = n, and let

s

be a factorization of type (4.9.2a).
(1) Change of a row or column, or more generally, the change of A to
A=A + vu", where v € R™, u € R" are given vectors. From (4.9.2a) we have

(49.7) PA= +wu',  w=PreR"

0

In the first step of the modification we annihilate the successive components
m, m—1, ..., 2 of the vector w using appropriate Givens matrices G
Gu-2.m-1>---» Gy2, 50 that

m—1.m>»

ﬁ":' kel = G12G23 Gm_LmW: (k, 0, ...,O)TE Rm,
k= tfw]= %]u].

The sketch below in the case m = 4 should clarify the effect of carrying out
the successive transformations G, ;,,. We denote by * here, and in the
further sketches of this section, those elements which are changed by a
transformation, other than the one set to zero:

R B
o
¥

* < =
£

(=]

If (4.9.7) is multiplied on the left as well by G
obtain

m—1.m» ---» (12 In order, we

(49.8) PA=R + ke,u” =R,
where

R

P:: P '::G
o !

], G::GIZGZ3---GM_1.M.
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Here P is unitary, as are G and P; the upper triangular matrix [§] is changed
step by step into an upper Hessenberg matrix

R
R =G
o}
that is a matrix with (R'),,=0for i >k + 1:
m=4, n=3)
X X X X X X X X X *
R _ 0 x x Gia 0 x x G |O * * G | *
o[ |0 0 «x 0 0 * 0 * = 0 x x
00 0 0 * 0 0 «x 0 0 x
R
= =R.
ols|

R=R +ke,u" in (498) is also an upper Hessenberg matrix, since the
addition changes only the first row of R’. In the second step of the
modification we annihilate the subdiagonal elements (13),-+ Lini=1,2 ..,
p=min(m — 1, n — 1) of R by means of further Givens matrices H,,,
H,s3, ..., H, ,44, so that [see (4.9.8)]

~- = |R
HPA=HR=[0], Ht:Hu,u+l"'H23H127

where R is, again, an n x nupper triangular matrix and P:=HPisanm x m
unitary matrix. A decomposition of A of the type (4.9.2a) is provided once

again:
pa=|R
=0l

The sequence of transformations R — H,, R — H,3(H,, R) - --- - HR will
be sketched for m = 4, n = 3:

N N X * X X X X X X
Bl ¥ Y Y| 0 e 10 * *| w4, |0 x x
10 x x|77lo x x| lo 0o x| |0 0 *
LO 0 «x 0 0 «x 0 0 x 0 0 0
R
=10l

(2) Deletion of a column. If A is obtained from A4 by the deletion of the kth
column, then from (4.9.2a) the matrix R:=PA is an upper Hessenberg
matrix of the following form (sketched form=4,n=4, k =2):

o x =
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The subdiagonal elements of R are to be annihilated as described before,
using Givens matrices

Hk.k+l’ Hk+1.k+2’ Tt Hn—-l.n'

The decomposition of A4 is
__ R _
Pi = P:=HP
[0 ]’ b

R R
lol ’=H[0], H=H, y Hy,3 n-1.--Hyi+1

(3) Addition of a column. If A = (A, a),a€ R™, and 4 is an m x n matrix
with m > n, then (4.9.2a) implies

X ... X X7

_ - X X
PA = [R Pa‘= R =

0 X

K x

The subdiagonal elements of R, which appear as a “spike” in the last
column, can be annihilated by means of a single Householder transforma-
tion H from (4.7.5):

[ x x X

X X
HR = *| = [gl.

0

[ 0 0]

P:=HP and R are components of the decomposition (4.9.2a) of A:

~— |R

pa-f)

(4) Addition of a row. If
- A
A= "
[ar], aeR",
then there is a permutation matrix I1 of order m + 1 which satisfies
— aT
A= .
mi- ]
The unitary matrix of order m + 1,

~ 1 0
e[t %n
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satisfies, according to (4.9.2a),

[ x ... x|
; X X
o 1 0 a’ a’ a - IR
PA_[O PHA]=[PA]=[§]_'R= X
| 0 0]

R is an upper Hessenberg matrix whose subdiagonal elements can be anni-
hilated using Givens matrices H,,, ..., H, ,,;:

_ < R -
P=HP, l0]=HR, H=H"'n+1...H23H12,
as described before, to produce the decomposition
- [R
A= .
et
(5) Deletion of a row: Let A be an m x n matrix with m > n. We assume

without loss of generality (see the use of the permutation above) that the last
row a’ of A is to be dropped:

(4

P=(P,p), peR"

We partition the matrix

accordingly and obtain, from (4.9.2a),

L

We choose Givens matrices H,,, m—1> Hm, m-25-.., Hpy to annihilate succes-
sive components m — 1, m—2,...,1of p H,yH,3 ... Hp o1 p=(0, ...,
0, m)". A sketch for m =4 is

X X X 0 0
_ X Has X Haz 0 Hax 0 _ 0
(49.10) p=|7 N B I e P I I
X * * * p 4
Now, P is unitary, so ||p|| = |n| = 1. Therefore, the transformed matrix HP,
H=H,H,, ... H, .- has the form
P O PO
(49.11) HP=[ ]=[ ] n=+1,
q =n 0 =n

since |n| = 1 implies g = 0 because of the unitarity of HP. Consequently P
is a unitary matrix of order m — 1. On the other hand, the H,,; transform the
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upper triangular matrix (§), with the exception of its last row, into an upper
triangular matrix

) et [ 3] 8

Sketching this for m = 4, n = 3, we have

X X x X x Xx X X x L
R 0 x x| #o }O x x| n. |O * *| 4, |0 x x
ol7]lo 0o x|7 |0 0 * 0 0 x|—/ |0 0 x

0 0O 0O 0 * 0 * * ok ox

7]

From (4.9.9), (4.9.11) it follows that

Al [P o][4] _|R

T| = o[=]0}
a 0 =||a .7

el

HP

and therefore

0

for the (m — 1)-order unitary matrix P and the upper triangular matrix R of
order n. This has produced a decomposition for 4 of the form (4.9.2a). It can
be shown that the techniques of this section are numerically stable in the
following sense. Let P and R be given matrices with the following property:
There exists an exact unitary matrix P’ and a matrix A’ such that

R
PA =
o)

is a decomposition of A’ in the sense of (4.9.2a) and the differences | P — P'|,
|A — A’|| are “small.” Then the methods of this section, applied to P, R in
floating-point arithmetic with relative machine precision eps, produce
matrices P, R to which are associated an exact unitary matrix P’ and a
matrix A’ satisfying:
(@) |P— P|, ||4 — A’| are “small,” and
(b) P’A" = [F] is a decomposition of A’ in the sense of (4.9.2a).
By “small” we mean that the differences above satisfy

|AP|| = O(m* eps) or [AA| = O(m* eps | 4]),

where « is small (for example a = 3).
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4.10 The Simplex Method

Linear algebraic techniques can be applied advantageously, in the context of
the simplex method, to solve linear programming problems. These problems
arise frequently in practice, particularly in the areas of economic planning
and management science. Linear programming is also the means by which a
number of important discrete approximation problems (e.g. data fitting in
the L, and L norms) can be solved. At this introductory level of treatment
we can cover only the most basic aspects of linear programming; for a more
thorough treatment, the reader is referred to the special literature on this
subject [e.g. Dantzig (1963), Gass (1969), Hadley (1962), or Murty (1976)].

A general linear programming problem (or linear program) has the fol-
lowing form:

(4.10.1) minimize c¢;x; + ;X + + ¢, X, =cC'x
with respect to all x € R” which satisfy finitely many constraints of the form

Xy + apx; + 0+ a,x, < by, i=1,2,...,my,
(4.102) iy Xy + a3 X, + 0+ ap X, =b;, i=m+1,m+2,...,m
The numbers ¢, a;, b; are given real numbers. The function ¢"x to be
minimized is called the objective function. Each x € R" which satisfies all of
the conditions (4.10.2) is said to be a feasible point for the problem. By
introducing additional variables and equations, the linear programming
problem (4.10.1), (4.10.2) can be put in a form in which the only constraints
which appear are equalities or elementary inequalities (inequalities, for exam-
ple, of the form x; > 0). It is useful, for various reasons, to require that the
objective function ¢”x have the form ¢’x = —x,,. In order to bring a linear
programming problem to this form, we replace each nonelementary inequa-
lity (4.10.2)

ap Xy + -+ aN, < b;

by an equality and an elementary inequality using a slack variable x,.;,
aiy Xy + 0+ g Xy + Xp ;= by, Xp+i 2 0.

If the objective function ¢, x, + *** + ¢, x, is not elementary, we introduce
an additional variable x, ., +, and include an additional equation

clxl + o+ Cn.Yn + xn+ml+l = 0
among the constraints (4.10.2). The minimization of ¢’ x is equivalent to the
maximization of x,,, + under this extended system of constraints.

Hence we can assume, without loss of generality, that the linear program-
ming problem is already given in the following standard form:
LP(/, p): maximize x,

(4.10.3) overall xeR" with Ax=5b,

x; =20 foriel
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In this formulation, I & N:={1, 2, ..., n} is a (possibly empty) index set, p is
a fixed index satisfying p € N\I, A = (a,, a5, ..., a,) is a real m x n matrix
having columns qg;, and b € R™ is a given vector. The variables x; for which
i € I are the restricted variables, while those for which i ¢ I are the free
variables. By

P={xeR'|Ax=b& x;=0forallie I}
we denote the set of all feasible points of LP(!, p), x* € P is an optimum point
of LP(/, p) if x} = max{x,|x € P}.
As an illustration:
minimize —x; — 2x,
subject to —x; +x, <2,
Xy + x5 < 4,
x, 20, x;20.

After the introduction of x3, x, as slack variables and x5 as an objective function
variable, the following standard form is obtained, I = {1, 2, 3,4}, p=5:

maximize Xxs

Subject to —X; + X2 + X3 = 2,
Xy + X3 + X4 =4,
—.\'1—2XZ +XS=0,

x;20 fori<4.

This can be shown graphically in R2. The set P (shaded in Figure 4) is a polygon.
(In higher dimensions P would be a polyhedron.)

Figure 4 Feasible region and objective function.

We begin by considering the linear equation system Ax = b of LP(I, p).
For any index vector J = (jy, ..., j,).j; € N,welet 4,:=(q;,, ..., a;) denote

the submatrix of 4 having columns a;; x, denotes the vector (x;,, ..., x; )"
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For simplicity we will denote the set
Uli=12,...,1}
of the components of J by J also, and we will write p € J if there exists an i

with p = j;.

(4.10.4) Definition. An index vector J = (j,, ..., j,) of mdistinct indices j; € N
is called a basis of Ax = b [and of LP(I, p)] if 4, is nonsingular. A, is also
referred to as a basis; the variables x; for i € J are referred to as basic
variables, while the remaining variables x, , k ¢ J, are the nonbasic variables.
If K = (ky, ..., k,—n) is an index vector containing the nonbasic indices, we
will use the notation J® K = N,

In the above example J,:=(3, 4, 5) and Jp=(4, S, 2) are bases.
Associated with any basis J, J @ K = N, there is a unique solution
X = x(J) of Ax = b, called the basic solution, with xx = 0. Since
Ax = Aji] + AKiK = A_]i‘, = b,
X is given by
(4.10.5) Xy;=b, Xx=0 with b:=Aj"b.

Moreover, given a basis J, each solution x of Ax = b is uniquely determined
by its nonbasic segment xx and the basic solution x. This follows from the
multiplication of Ax = A;x; + Axxx = b by A7 ! and from (4.10.5):

(4.106) XJ = 5'— A;lAKxK

il - A;lAKXK.

If xx € R*™™ is chosen arbitrarily, and if x; (and thereby x) is defined by
(4.10.6), then x is a solution of Ax = b. Therefore, (4.10.6) provides a par-
ametrization of the solution set {x|Ax = b} through the components of
Xk € R =™,

If the basic solution X of Ax = b associated with the basis J is a feasible
point of LP(I, p), x € P, that is, if

(4.10.7) %20 foralliel < x;20 forallielInJ,

then J is a feasible basis of LP(I, p) and X is a basic feasible solution. Finally,
a feasible basis is said to be nondegenerate if

(4.10.8) ;>0 foralliel nJ.

The linear programming problem as a whole is nondegenerate if all of its
feasible bases are nondegenerate.

Geometrically, the basic feasible solutions given by the various bases of LP(I, p)
correspond to the vertices of the polyhedron P of feasible points, assuming that P
does have vertices. In the above example (see Figure 3) the vertex 4 € P belongs to
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the feasible basis J 4, = (3, 4, 5), since A4 is determined by x, = x, =0 and {1, 2} is in
the complementary set corresponding to J, in N = {1, 2, 3, 4, 5}; B is associated
with J5 = (4, 5, 2), C is associated with J¢c = (1, 2, 5), etc. The basis Jg = (1, 4, 5) is
not feasible, since the associated basic solution E is not a feasible point (E ¢ P).

The simplex method for solving linear programming problems, due to
G. B. Dantzig, is a process which begins with a feasible basis J, of LP(I, p)
satisfying p € J, and recursively generates a sequence {J;} of feasible bases J;
of LP(I, p) with p € J; for each i by means of simplex steps

Ji—>Jisq-

These steps are designed to ensure that the objective function values x(J;),
corresponding to the bases J; are nondecreasing:

x(J:)p € X(Ji44), foralli=0.

In fact, if all of the bases encountered are nondegenerate, this sequence is
strictly increasing, and if LP(I, p) does have an optimum, then the sequence
{J.} terminates after finitely many steps in a basis J, whose basic solution
%(J ») is an optimum point for LP(I, p) and is such that x(J;), < X(J;+,), for
all 0 <i < M — 1. Furthermore, each two successive bases J = (jy, ..., jm)
and J = (j,, ..., j.) are neighboring, that is, J and J have exactly m — 1 com-
ponents in common. This means that J may be obtained from J through an
index exchange: there are precisely two indices g, s € N satisfying g€ J,
s¢Jand q¢ J,se J: thus J = (J U {s})\{q}-

For nondegenerate problems, neighboring feasible bases correspond geome-
trically to neighboring vertices of P. In the example above (Figure 3), J. = (3, 4, 5)
and Jp = (4, 5, 2) are neighboring bases, and 4 and B are neighboring vertices.

The simplex method, or more precisely, “phase two” of the simplex
method, assumes that a feasible basis J of LP(I, p) satisfying p € J is already
available. Given that LP(I, p) does have feasible bases, one such basis can be
found using a variant known as “ phase one ” of the simplex method. We will
begin by describing a typical step of phase two of the simplex method, which
leads from a feasible basis J to a neighboring basis J of LP(/, p):

(4.10.9) Simplex Step. Requirements: J = (j,, ..., jm) is assumed to be a feas-
ible basis of LP(I, p) having p=j,€J,J ®K = N.
(1) Compute the vector

b:==A;'%
which gives the basic feasible solution X corresponding to J, where

X;=b,  Xxgx=0.
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(2) Compute the row vector
mm el AT,

where ¢,=(0,...,1,...,0)" € R™ is the tth coordinate vector for R™.
Determine the values

C TGy, ke K.
using m.
(3) Determine whether

(4.10.10) =0 forallke Kn I
and ¢, =0 forallke K\L

(a) If so, then stop. The basic feasible solution x is optimal for LP(I, p).
(b) If not, determine an s € K such that

¢, <0, seKnl or ¢,#0, seK\l,

and set ¢ = —sign c,.
(4) Calculate the vector

6) If
(4.10.11) od; <0 foralliwithj el
stop: LP(I, p) has no finite optimum. Otherwise,
(6) Determine an index, r with j, € I, oa, > 0, and
bf =min‘—b—‘_ i:jiel&ao?,->0‘.
ad, log; f

(7) Take as J any suitable index vector with

J=( v S\
for example
F=(jrseeerdoets S drats s Jm)
or

jz:(jl’ ""jr—l’jr-&-l’ ""jm’ S).

We wish to justify these rules. Let us assume that J = (j,, ..., j,) is a
feasible basis for LP(I, p) with p=j, € J, J® K = N. Rule (1) of (4.10.9)
produces the associated basic feasible solution x = x(J), as is implied by
(4.10.5). Since all solutions of Ax = b can be represented in the form given by
(4.10.6), the objective function can be written as

X, =€ x; =X, — e A7 "Agxg
(4.10.12) =X, — mAgxg

= .)—Cp — Cx Xk -
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This uses the fact that p = j,, and it uses the definitions of the vector = and of
the components cx, ck € R"™™, as given in rule (2). ¢k is known as the vector
of reduced costs. As a result of (4.10.12), ¢, , k € K, gives the amount by which
the objective function x, changes as x; is changed by one unit. If the condi-
tion (4.10.10) is satisfied [see rule (3)], it follows from (4.10.12) for each
feasible point x of LP(I, p), since x; > 0 for i € I, that
Xp=X,— Y CX =X,
keKnlI

that is, the basic feasible solution x is an optimum point for LP(I, p). This
motivates the test (4.10.10) and statement (a) of rule (3). If (4.10.10) is not
satisfied, there is an index s € K for which either

(4.10.13) ¢, <0, seKnlI
or else
(4.10.14) ¢ #0, se K\l

holds. Let s be such an index. We set 6 := —sign c, . Because (4.10.12) implies
that an increase of ox, leads to an increase of the objective function x,,, we
consider the following family of vectors x(@) € R", 8 € R:

x(0);=b — 00 Aj 'a; = b — o,
(4.10.15) x(0), = 0a,

x(0) =0 forkeK, k=+#s.
Here & = A; 'a, is defined as in rule (4) of (4.10.9).

In our example I={1,2,3,4} and Jo=J,=(3,4,5) is a feasible basis;
Ko=(1,2), p=5¢€Jo, to = 3. (410.9) produces, starting from J,,

1 2
Ajy= 1 |, B=|4],
1 0

x(Jo) = (0, 0, 2, 4, 0)7 (which is point A in Figure 3), and n4,, = el <>n = (0, 0, 1).
The reduced costs are ¢; = ma; = — 1, ¢, = ma, = —2. This implies that J, is not
optimal. If we choose the index s = 2 for (4.10.9), rule (3)(b), then

The family of vectors x(6) is given by
x(0)=(0,6,2 6,4 — 6, 20)".
Geometrically x(8), 6 = 0 describes a semi-infinite ray in Figure 3 which extends

along the edge of the polyhedron P from vertex A(6 = 0) in the direction of the
neighboring vertex B(0 = 2).
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From (4.10.6) it follows that Ax(8)=b for all 6 € R. In particular

(4.10.12) implies, from the fact that X = x(0) and as a result of the choice of 7,
that

(4.10.16) x(0), = X, — e x(0) = X, + 0| ¢,

so that the objective function is a strictly increasing function of 0 on the
family x(0). It is reasonable to select the best feasible solution of Ax = b from
among the x(0); that is, we wish to find the largest 6 > 0 satisfying

x(0), =0 foralliel
From (4.10.15), this is equivalent to finding the largest 6 > 0 such that
(4.10.17) x(0);, = b; — Bea; >0 for all i with j, € I,

because x(6), > 0 is automatically satisfied, for all ke K ~n I and 6 >0,
because of (4.10.15). If o&; < 0 for all j; eI [see rule (5) of (4.10.9)], then
x(0) is a feasible point for all 0>0, and because of (4.10.17)
sup{x(6),]0 = 0} = +co: LP(I, p) does not have a finite optimum. This
justifies rule (5) of (4.10.9). Otherwise there is a largest 0 = 6 for which
(4.10.17) holds:

o= _minl % |i e 18 05,50
oo, ‘Uai ‘

This determines an index r with j, € I, g&, > 0 and
(4.10.18) x(0);, = b, — Ooa, = 0, x(0) feasible.

In the example

x(0) = (0, 2, 0, 2, 4)" corresponds to vertex B of Figure 3.

From the feasibility of J, § > 0, and it follows from (4.10.16) that
x(0), = x,.
If J is nondegenerate, as defined in (4.10.8), then 0 > 0 holds and further,
x(0), > x,.

From (4.10.6), (4.10.15), and (4.10.18), x = x(0) is the uniquely determined
solution of Ax = b having the additional property
=0 forkeK,k#s

x;, =0,
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that is, xg = 0, K= (K v {j,})\{s}. From the uniqueness of x it follows that
Ay, J=(J U {s))\{j,}, is nonsingular; x(0) = ¥(J) is, therefore, the basic
solution associated with the neighboring feasible basis J, and we have

X(J), > %(J), ifJ is nondegenerate,
4.10. X(J), b
(4.1019) x(J), > x(J), otherwise.

In our example we obtain the new basis J, = (2, 4, 5) = Jg, K, = (1, 3), which
corresponds to the vertex B of Figure 3. With respect to the objective function x5, B
is better than A: X(Jp)s = 4 > X(J4)s = 0.

Since the definition of r implies that j, € I always holds, it follows that
J\ = \I;

that is, in the transition J — J at most one nonnegatively constrained var-
iable x; , j, € I, leaves the basis; as soon as a free variable x,, s ¢ I, becomes
a basis variable, it remains in the basis throughout all subsequent simplex
steps. In particular, p € J, because p € J and p ¢ I. Hence, the new basis J
also satisfies the requirements of (4.10.9), so that rules (1)-(7) can be applied
to J in turn. Thus, beginning with a first feasible basis J, of LP(I, p) with
p € J,., we obtain a sequence

JO_’Jl —"Jz—’
of feasible bases J; of LP(I, p) with p € J;, for which
XJo), < X(Jy), < X(J2), <

in case all of the J, are nondegenerate. Since there are only finitely many
index vectors J, and since no J; can be repeated if the above chain of
inequalities holds, the simplex method must terminate after finitely many
steps. Thus, we have proven the following for the simplex method:

(4.10.20) Theorem. Let J, be a feasible basis for LP(I, p) with pe J,. If
LP(1, p) is nondegenerate, then the simplex method generates a finite sequence
of feasible bases J; for LP(I, p) with p € J; which begin with J, and for which
X(J;)p < X(Ji41),- Either the final basic solution is optimal for LP(1, p), or
LP(1, p) has no finite optimum.

We continue with our example: as a result of the first simplex step we have a new
feasible basis J, = (2, 4. 5) = Jg. K, = (1, 3). ¢, = 3, so that

100 2
Ay =| 1 10}, B=|2|. xU.)=(0202 4)7(=B)
~2 0 1 4
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The reduced costs are ¢, = ma; = —3, ¢3 = na; = 2; hence J, is not optimal:
-1
S=l,<i=A_.la1 = = 2 = r=2
-3
Therefore

=@ 1.5=Jc. Ky=(@3.4). t,=3

1 -1 0 3
A.Izz 1 l 0 N 5—_— 1 .
-2 -1 1 7

%(J2) = (1. 3,0,0, 7)(=C),
nA;,=¢, = n=(L31)
The reduced costs are c3 =ma; =3 >0,c, = na, =3 > 0.

The optimality criterion is satisfied, so X(J,) is optimal; ie, X; =1, X; =3,
X3 =0, X, =0, Xs = 7. The optimal value of the objective function x; is X5 = 7.

We observe that the important quantities of each simplex step—b, m, and
a—are determined by the following systems of linear equations:

A;b= b = b [(4.109), rule (1)],
(4.10.21) nA; =el = n [(4.109), rule (2)],
Aja=a; = a [(410.9), rule (4)].

The computational effort required to solve these systems for successive bases
J = J = -+ can be significantly reduced if it is noted that the successive bases
are neighboring: each new basis matrix A4; is obtained from its predecessor
A, by the exchange of one column of A, for one column of Ax. Suppose,
for example, a decomposition of the basis matrix 4; of the form (49.1),
FA; = R, F nonsingular, R upper triangular, is used (see Section 4.9). On
the one hand, such a decomposition can be used to solve the equation
systems (4.10.21) in an efficient manner:

Rb=Fb = b,
R'z=e = z = n=:"F,
Rd = Fa;, = a.

On the other hand, the techniques of Section 4.9 can be used on the decom-
position FA, = R of A, in each simplex step to obtain the corresponding
decomposition FA; = R of the neighboring basis

'7= (jl""’jr—l’jr-?-l. ~~v~jm’s)
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[compare (4.10.9), rule (7)]. The matrix F 4;, with this choice of index vector
J, is an upper Hessenberg matrix of the form depicted here form = 4,r = 2:

X X

FA; = =R

o R =K =
= % = =

The subdiagonal elements can easily be eliminated using transformations of
the form (495),E, ,,1,E,+1.,425--> Em—1.m» which will change R’ into an

upper triangular matrix R:
FA;=R, F=EF, R=ER, E=E, y Em2m-1- Ev,sy

Thus it is easy to implement the simplex method in a practical fashion by
taking a quadruple M = {J; t; F, R} with the property that

p=j, FA;=R

and changing it at each simplex step J — J into an analogous quadruple
M = {J; t; F, R}. To begin this variant of the simplex method, it is necessary
to find a factorization Fy 4, = R, for A, of the form given in (4.9.1) as well
as finding a feasible basis J, of LP(I, p) with p € J,. ALGOL programs for
such an implementation of the simplex method are to be found in Wilkinson
and Reinsch (1971), and a roundoff investigation is to be found in Bartels
(1971).

[In practice, particularly for large problems in which the solution of any
one of the systems (4.10.21) takes a significant amount of time, the vector
X;=A;'b=0b of one simplex step is often updated to the vector
X; = x(0); = A7 'b of the next step by using (4.10.15) with the value
0 = b,/oa, as given by (4.10.9), rule (6). The chance of incurring errors,
particularly in the selection of the index r, should be borne in mind if this is
done.]

The more usual implementations of the simplex method use other quanti-
ties than the decomposition FA,; = R of (4.9.1) in order to solve the equation
systems (4.10.21) in an efficient manner. The “ basis inverse method ” uses a
quintuple of the form

M={J;t;B, b, n}
with

p=j. B=A;', b==A;'s, n=elAs'.
Another variant uses the quintuple
M=1{J;t; 4, b,n}
with

jo=p, A=Aj'Ax, b=A;'b, n=elA;', J®K=N.
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In the simplex step J — J efficiency can be gained by observing that the
inverse Aj ! is obtainable from A; ! through multiplication by an appro-
priate Frobenius matrix G (see Exercise 4 of Chapter 4): A7' = GA;'. In
this manner somewhat more computational effort can be saved than when
the decomposition FA; = R is used. The disadvantage of updating the in-
verse of the basis matrix using Frobenius transformations, however, lies in
numerical instability: it is possible for a Frobenius matrix which is used
in this inverse updating process to be ill conditioned, particularly if the basis
matrix itself is ill conditioned. In this case, errors can appear in A} !, A5,  Ax,
for M,, M, and they will be propagated throughout all quintuples M 5, M,
j > i. When the factorization FA; = R is used, however, it is always possible
to update the decomposition with well-conditioned transformations, so that
error propagation is not likely to occur.

The following practical example is typical of the gain in numerical stability which
one obtains if the triangular factorization of the basis (4.9.1) is used to implement the
simplex method rather than the basis inverse method. Consider a linear program-
ming problem with constraints of the form

(4.10.22) Ax = b, A= (Al A2),
x=0.
The 10 x 20 matrix 4 is composed of two 10 x 10 submatrices A1, A2:

1

Al = (al,-,‘), al,-,‘ = m,

Lk=1,...,10,

A2 = I = identity matrix of order 10.

Al is very ill conditioned, and A2 is very well conditioned. The vector

10 1
b= X ik

that is,
b=Al-e, wheree=(l,...,1)7 € R

is chosen as a right-hand side. Hence, the bases J,=(1,2,...,10) and
Jy=(11, ..., 20) are both feasible for (4.10.22); the corresponding basic solutions
are

x(J1)= (’:)1) b, =A;j'b=Al"'b=e,
(4.10.23) 0
i(.’z):z (E ), Ez :=A;Zlb= A2_1b= b.
2
We choose J, = (11, 12, ..., 20) as a starting basis and transform it, using the basis

inverse method on the one hand and triangular decompositions on the other, viaa
sequence of single column exchanges, into the basis J . From there another sequence
of single column exchanges is used to return to J,:

Jy—oroJy o dy.
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The resulting basic solutions (4.10.23), produced on a machine having relative preci-
sion eps = 107 !!, are shown in the following table.

Exact
basic Basis Triangular
Basis solution inverse decomposition
J,b, = b = b = b
1 9.995 251 6281,, — 1 9.998 637 8918,, — 1
1 1.018 551 9965,, © 1.005 686 0944,, O
1 7.596 751 9456, — 1 9.196 219 3606,, — 1
1 2502 0319231,, O 1.555 895 6482,, O
1.5 =<l ># <—4.265 502 0405,, O ># —1.177 196 3556,, O
1 1 1.208 552 0735,, 1 6.157 1720228,, O
1 —1.331094 5894,, 1 —6.533 076 2136,, O
1 1.208 139 8560,, 1 7.633 553 7514,, O
1 —3.717 873 7849,, © —2.228 141 2212,, O
1 1.847 607 2006,, O 1.666 626 9133,, O
2019877 3448,, O —1.199 958 5030,, © 20198773448, O
1.603 210 6781,, O —1.114 741 3211,, © 1.603 210 6780,, O
1.346 800 4217,, © —9.987 647 8557, — 1 1.346 800 4217,, O
1.168 228 9932,, O —8.910 752 3957,, — 1 1.168 228 9933,, O
1,6, =< 1.034 895 6598,, O > %< —7.980 878 7783,, — 1 ># < 1.034 895 6598,, O
9.307 289 9322,, -1 —7.191 967 3857,, ~ 1 9.307 289 9617,, — 1
8.466 953 7977,, — 1 —6.523 444 2973, — 1 8.466 953 7978,, — 1
7.772 509 3533,, — 1 —5.954 308 9303,, — 1 7.172 509 3560,, — 1
7.187 714 0316,, — 1 —5.466 517 9294,, — 1 7.187 714 0320,, — 1
6.687 714 0316,, — 1 —5.045 374 4089,, — 1 6.687 714 0328,, — 1

The following is to be observed: Since A;, = I 0, both computational methods
yield the exact solution at the start. For the basis J,, both methods give equally
inexact results, which reflects the ill-conditioning of A;,. No computational method
could produce better results than these without resorting to higher-precision arith-
metic. After passing through this ill-conditioned basis A,;,, however, the situation
changes radically in favor of the triangular decomposition method. This method
yields, once again, the basic solution corresponding to J, essentially to full machine
accuracy. The basis inverse method, in contrast, produces a basic solution for J, with
the same inaccuracy as it did for J,. With the basis inverse method, the effect of
ill-conditioning encountered while processing one basis matrix A4; is felt throughout
all further bases; this is not the case using triangular factorization.

4.11 Phase One of the Simplex Method

In order to start phase two of the simplex method, we require a feasible basis
Jo of LP(I, p) with p = j, € J,; alternatively, we must find a quadruple
My = {Jo; to; Fo, Ro} in which a nonsingular matrix F, and a nonsingular
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triangular matrix R, form a decomposition Fy 4, = R, as in (4.9.1) of the
basis matrix A, .

In some special cases, finding J,(9M,) presents no problem, e.g. if LP(1, p)
results from a linear programming problem of the special form

minimize c¢;x; + 4 ¢, X,
subject to a;;x; + -+ a,x, <b;, i=1,2,....m,
;20 foriel,c{l,2,...,n},
with the additional property
b;=0 fori=1,2,....,m.

Such problems may be transformed by the introduction of slack variables
Xp41e -+ Xnom iNto the form

maximize X,,n,+1
(4.11.1) subjectto a; X, + "+ apuN, + X, i=b;, i=12,....m,
Xy Ny Xpymer = 1
;20 foriel=I,u{n+1, ....,n+m.

Note that x,,,,,, 1 =1~ ¢y x; — - — ¢, x,. The extra positive constant (ar-
bitrarily selected to be 1) prevents the initially chosen basis from being
degenerate. (4.11.1) has the standard form LP(I, p) with

ay; ... a;, 1 b,
A= ar.nl a;nn . 1 ’ b= i)m
¢y ... €y 1 1

p=n+m+1, I=I,o{n+1,....n+m

and an initial basis J, with peJ, and a corresponding
My = (Jos to: Fo. Ro) given by

Jo=(n+1L,n+2,...on+m+1) toxm+]1

1 0
F0=R0==Im+,=[ ] (order m + 1).
0 1

Since b; = 0for i =1, ..., m, the basis J, is feasible for (4.11.1).

“Phase one of the simplex method ” is a name for a class of techniques
which are applicable in general. Essentially, all of these techniques consist of
applying phase two of the simplex method to some linear programming
problem derived from the given problem. The optimal basis obtained from
the derived problem provides a starting basis for the given problem. We will
sketch one such method here in the briefest possible fashion. This sketch is
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included for the sake of completeness. For full details on starting techniques
for the simplex method, the reader is referred to the extensive literature on
linear programming, for example to Dantzig (1963), Gass (1969), Hadley
(1962), and Murty (1976).

Consider a general linear programming problem which has been cast into
the form

minimize ¢;x; + " + ¢, X,
4.11.2) subject to aj;x; + -+ a;x,=b;, j=1,....m,
x; =20 foriel,

where I = {1, ..., n}. We may assume without loss of generality that b; > 0
for j =1, ..., m (otherwise multiply the nonconforming equations through
by —1).

We begin by extending the constraints of the problem by introducing

artificial variables x, . 1, ..., Xp+ "

a;1 Xy + +aln'Yn+-Yn+l =bla
(4.11.3) ; ;
A1 X1 + 00+ Ay Xy, + Xpim = b

x; 20 forielu{n+1,...,n+m.

Clearly there is a one-to-one correspondence between feasible points for
(4.11.2) and those feasible points for (4.11.3) which satisfy

(4.11.4) Np+1=Nps2=""=Xpom=0.

We will set up a derived problem with constraints (4.11.3) whose maximum
should be taken on, if possible, by a point satisfying (4.11.4). Consider

LP(I, p):

maximize X, .

subject to a;;x; + -+ AN, Xpiq =b,,
a1 X, + "+ a,,x, + Xpim =b,,

m
Xn+1 +'”+xn+m+xn+m+l =22bis
i=1

;20foralliel=Iu{n+1, ... n+m
withp=n+m+ 1.

We may take Jo = {n + 1, ..., n + m + 1} as a starting basis with

m T
Bo=(b1,...,bm, Zb,) .
i=1
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It is evident that x,,,., <2 Y™, b;; hence LP(I,p) is bounded.
Furthermore

Xpim+1 =2 Zbi
i=1

if and only if (4.11.4) holds. o
Corresponding to J, we have the quadruple My = (Jo; to; Fo, Ry) given
by

-~

t0=m+19

1 0
F, = ’
° 0 1

-1 -1 1

A [ 1 0
Ry = e .
| 0 1
Phase 2 can be applied immediately to LP(J, p), and it will terminate with
one of three possible outcomes:

(1) Xpymer <2 %;'; b; [i.e., (4.11.4) does not hold],

1
(2) Xpsm+1=2 )™, b; and all artificial variables are nonbasic,
(3) Xn+m+1 = 2 1

In case (1), (4.11.2) is not a feasible problem [since any feasible point for
(4.112) would correspond to a feasible point for LP(I, p) with
Xp+m+1=2 3.7y b]. In case (2), the optimal basis for LP(I, p) clearly pro-
vides a feasible basis for (4.11.2). Phase 2 can be applied to the problem as
originally given. In case 3, we are faced with a degenerate problem, since the
artificial variables which are basic must have the value zero. We may assume
without loss of generality (by renumbering equations and artificial variables
as necessary) that x,, {, ..., X, are the artificial variables which are basic
and have value zero. We may replace x,, ., by a new variable x,,,., and
use the optimal basis for LP(I, p) to provide an initial feasible basis for the
problem

b; and some artificial variables are basic.

maximize c¢yx; 4 oeeeeee +C,x,
subject to  a;;x; +cccc %, + X4y _b,
Qg1 Xy 4 oeeeenn +ay, X, +X"+k :bk,
Xp+1 + 7 F Xpsk + Xnrks1 =0,
a“+l’1x1+'”+ak+l,nxn =bk+l
amlxl + ....... +am"x" =bm

;20 forielun+1,...,n+k+1}
This problem is evidently equivalent to (4.11.2).
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4 A Elimination Methods for Sparse Matrices

Many practical applications require solving systems of linear equations Ax =
b with a matrix A that is very large but sparse, i.e., only a small fraction of the
elements a; of A are nonzero. Such applications include the solution of
partial differential equations by means of discretization methods (see Sections
74,7.5, 8.4), network problems, or structural design problems in engineering.
The corresponding linear systems can be solved only if the sparsity of A is
used in order to reduce memory requirements, and if solution methods are
designed accordingly. Many sparse linear systems, in particular, those arising
from partial differential equations, are solved by iterative methods (see Chap-
ter 8). In this section, we consider only elimination methods, in particular, the
Cholesky method (see 4.3) for solving linear systems with a positive-definite
matrix 4, and explain in this context some basic techniques for exploiting the
sparsity of 4. For further results, we refer to the literature, e.g., Reid (1971),
Rose and Willoughby (1972), Tewarson (1973), and Barker (1974). A system-
atic exposition of these methods for positive-definite systems is found in
George and Liu (1981), and for general sparse linear systems in Duff, Erisman,
and Reid (1986).

We first illustrate some basic storage techniques for sparse matrices. Con-
sider, for instance, the matrix

1 000 -2
3 020 1
A=|0 -4 0 7 0
0 -5 00 0
0 -6 00 6

One possibility is to store such a matrix by rows, for instance, in three
one-dimensional arrays, say a, ja, and ip. Here, a[k], k=1, 2, ..., are the
values of the (potentially) nonzero elements of A, ja[k] records the column
index of the matrix component stored in a[k]. The array ip holds pointers:
if ip[i] = p and ip[i + 1] = q then the segment of nonzero elements in row
i of A begins with a[p] and ends with a[q — 1]. In particular, if ip[i] =
ip[i + 1] then row i of A is zero. So, the matrix could be stored in memory
as follows

i= 12345 6 17 8 9 10 11
iplil= 1 3 6 8 9 11

jalil= 51135 4 2 2 2 5
ai]J=—-2 1 3 21 7 -4 -5 —6 6
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Of course, for symmetric matrices A, further savings are possible if one stores
only the nonzero elements q;, with i < k.

When using this kind of data structure, it is difficult to insert additional
nonzero elements into the rows of A, as might be necessary with elimination
methods. This drawback is avoided if the nonzero elements of A4 are stored as
a linked list. It requires only one additional array next: if a[k] contains an
element of row i of A4, then the “next” nonzero element of row i is found in
a[next[k]], if next[k] # O. If next[k] = O then a[k] was the “last” nonzero
component of row i.

Using linked lists the matrix can be stored as follows:

i= 12 3 456178 9 10
iplil= 6 4 5 10 9
jalil= 23 5 1 4155 2 2
2 7
7 1

alil]=—4 -2 3 116 -6 -5
next[i]= 0 0o 2 300 8 0

Now it is easy to insert a new element into a row of A: e.g., a new element a,,
could be incorporated by extending the vectors a, ja, and next each by one
component a[11], ja[11], and next[11]. The new element a,, is stored in
a[11]; ja[11] = 1 records its column index; and the vectors next and ip are
adjusted as follows: next[11] := ip[3] (=5), ip[3] := 11. On the other hand,
with this technique the vector ip no longer contains information on the
number of nonzero elements in the rows of A4 as it did before.

Refined storage techniques are also necessary for the efficient implementa-
tion of iterative methods to solve large sparse systems (see Chapter 8). How-
ever, with elimination methods there are additional difficulties, if the storage
(data structure) used for the matrix A is also to be used for storing the factors
of the triangular decomposition generated by these methods (see Sections 4.1
and 4.3). These factors may contain many more nonzero elements than A. In
particular, the number of these extra nonzeros (the “fill-in” of A4) created
during the elimination depends heavily on the choice of the pivot elements.
Thus a bad choice of a pivot may not only lead to numerical instabilities (see
Section 4.5), but also spoil the original sparsity pattern of the matrix 4. It is
therefore desirable to find a sequence of pivots that not only ensures numeri-
cal stability but also limits fill-in as much as possible. In the case of Cholesky’s
method for positive-definite matrices A, the situation is particularly propi-
tious because, in that case, pivot selection is not crucial for numerical stabil-
ity: Instead of choosing consecutive diagonal pivots, as described in Section
4.3, one may just as well select them in any other order without losing
numerical stability (see (4.3.6)). One is therefore free to select the diagonal
pivots in any order that tends to minimize the fill-in generated during the
elimination. This amounts to finding a permutation P such that the matrix
PAPT = LLT has a Cholesky factor L that is as sparse as possible.
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The following example shows that the choice of P may influence the
sparsity of L drastically. Here, the diagonal elements are numbered so as to
indicate their ordering under a permutation of 4, and x denotes elements #0:
The Cholesky factor L of a positive-definite matrix 4 having the form

1 x x x x X
x 2 x x
A=|x 3 =LLT, L=|x x x
b'd 4 X X X X
X 5 X X X X X

is in general a “full” matrix, whereas the permuted matrix PAPT obtained by
interchanging the first and last rows and columns of A has a sparse Cholesky
factor

5 X

PAPT = 3 = LLT, L= x

X

- X ® X =

4
X X X X X X X X X

Efficient elimination methods for sparse positive-definite systems therefore
consist of three parts:

1. Determine P so that the Cholesky factor L of PAPT = LL" is as sparse as
possible, and determine the sparsity structure of L.

2. Compute L numerically.

3. Compute the solution x of Ax = b, i.., of (PAPT)Px = LL"Px = Pb by
solving the triangular systems Lz = Pb, L™u = z, and letting x := PTu.

In step 1, only the sparsity pattern of 4 as given by index set
Nonz(4) := {(i, j)|j < i und a;; # 0},

is used to find Nonz(L), not the numerical values of the components of L: In
this step only a “symbolic factorization” of PAPT takes place; the “numerical
factorization” is left until step 2.

It is convenient to describe the sparsity structure of a symmetric n X n
matrix 4, i.e., the set Nonz(A), by means of an undirected graph GA = (V4, E4)
with a finite set of vertices (nodes) ¥4 = {v,, v,, ..., v,} and a finite set

E*:= {{v;, v;}|(i, j) € Nonz(A4)}

of “undirected” edges {v;, v;} between the nodes v; and v; # v; (thus an edge is
a subset of ¥4 containing two elements). The vertex v; is associated with the
diagonal element g;; (i.e., also with row i and column i) of 4, and the vertices
v; # v; are connected by an edge in G* if and only if a;; # 0.



248 4 Systems of Linear Equations

EXAMPLE 1. The matrix

x x

x 2
3 X

x 4 x
x x 5 X
X 6 x

x x 7
is associated with the graph G4
Uy Uy L7 Us Uy

Uy Vs
We need a few concepts from graph theory. If G = (V, E) is an undirected
graph and S < V a subset of its vertices then Adjg(S), or briefly

Adj(S) := {v e V\S|{s, v} € E for some s € S}

denotes the set of all vertices v € ¥\ S that are connected to (a vertex of) S by
an edge of G. For example, Adj({v}) or briefly Adj(v) is the set of neighbors of
the node v in G. The number of neighbors of the vertex v € V deg v := | Adj(v)|
is called the degree of v. Finally, a subset M < V of the vertices is called a
clique in G if each vertex x € M of M is connected to any other vertex y € M,
y # X, by an edge of G.

We return to the discussion of elimination methods. First we try to find a
permutation so that the number of nonzero elements of the Cholesky factor
L of PAPT = LLT becomes minimal. Unfortunately, an efficient method for
computing an optimal P is not known, but there is a simple heuristic method,
the minimal degree algorithm of Rose (1972), to find a P that nearly minimizes
the sparsity of L. Its basic idea is to select the next pivot element in Cholesky’s
method as that diagonal element that is likely to destroy as few 0-clements as
possible in the elimination step at hand.

To make this precise, we have to analyze only the first step of the Cholesky
algorithm, since this step is already typical for the procedure in general. By
partitioning the n x n matrices 4 and L in the equation A = LLT

d a’ a O a IT r r
290G Bl e

whered = a,, and (d, a”) s the first row of 4, we find the following relations

a=\/E, I=a/\/2, LIT=A4:=A4-1IT.
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Hence, the first column L, of L and the first row LT of LT are given by

ne [0

and the computation of the remaining columns of L, th_al is, of the columns
of L, is equivalent to the Cholesky factorization A = LLT of the (n — 1) x
(n — 1) matrix A = (@, )7 ,=2:

aa¥

4.A.1)

T, = ay — %‘f foralli, k > 2.

Disregarding the exceptional case in which the numerical values of a; # 0
and q;a, = a,;a,, # 0 are such that one obtains @;, = 0 by cancellation, we
have

4.A2) a, #0<«a, #0 or aja, #0.

Therefore, the elimination step with the pivot d = a,, will generate a number
of new nonzero elements to 4, which is roughly proportional to the number
of nonzero components of the vector a” = (a,, ..., a,) = (@12, ---» A1)

The elimination step A — 4 can be described in terms of the graphs G =
(V,E):= G* and G = (V, E):= G* associated with A and A: The vertices
1,2,...,nof G = GA(tesp. 2, 3, ..., n of G = G*) correspond to the diagonal
elements of A (resp. A); in particular, the pivot vertex 1 of G belongs to the
pivot element a,,. By (4.A.2), the vertices i # k, i, k > 2, of G are connected
by an edge in G if and only if they are either connected by an edge in G
(a, # 0), or both vertices i, k are neighbors of pivot node 1 in G (a,;a,; # 0,
i, k € Adjz(1)). The number of nonzero elements a,; # 0 with i > 2 in the first
row of A is equal to the degree deg;(1) of pivot vertex 1 in G. Therefore, a,
is a favorable pivot, if vertex 1 is a vertex of minimum degree in G. Moreover,
the set Adjg(1) describes exactly which nondiagonal elements of the first row
of LT (first column of L) are nonzero.

ExampLE 2. Choosing a,; as pivot in_the following matrix A leads to fill-in at the
positions denoted by ® in the matrix A:

B T
1 x x
2 x x ® x
x 2 x x
x 3 X
x 3 —
A= = A=| x X
X 4 x x
® 5
X x 5
X X 6
[ x x x 6 |
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The associated graphs are:

6 5 4

6

Generally, the choice of a diagonal pivot in A corresponds to the choice of
a vertex x € V (pivot vertex) in the graph G = (¥, E) = G4, and the elimina-
tion step A — A with this pivot corresponds to a transformation of the graph
G (=G*) into the graph G = (¥, E) (= G*) (which is also denoted by G, = G
to stress its dependence on x) according to the following rules

1) V:=V\{x}. 3 N
2) Connect the nodesy # z,y,z € V by an undirected edge ({y, z} € E), if y and

z are connected by an edge in G ({y, z} € E), or if y and z are neighbors of x
in G (y, z € Adjg(x)).

For obvious reasons, we say that the graph G, is obtained by “elimination of
the vertex x” from G. _
By definition, we have in G, for ye V = V\{x}

Adjg(y) if y ¢ Adjg(x)
(Adjg(x) v Adjg(Y)\{x, ¥} otherwise.

Every pair of vertices in Adjs(x) is connected by an edge in G,. Those vertices
thus form a clique in G,, the so-called pivot clique, associated with pivot vertex
x chosen in G. Moreover, Adj;(x) describes the nonzero off-diagonal elements
of the column of L (resp. the row of L”) that correspond to pivot vertex x.

As we have seen, the fill-in newly generated during an elimination step is
probably small if the degree of the vertex selected as pivot vertex for this step
is small. This motivates the minimal degree algorithm of Rose (1972) for
finding a suitable sequence of pivots:

(“4A3)  Adjg () = {

(4.A.4) Minimal Degree Algorithm. Let A be a positive definite n x n matrix
and G° = (V°, E®) := G* be the graph associated to A.
Fori=12,...,n:

1) Determine a vertex x; € V™! of minimal degree in G'™*.
2) Set G':= Gt

Remark. A minimal degree vertex x; need not be uniquely determined.

ExaMPLE 3. Consider the matrix A of example 2. Here, the nodes 1, 3, and 5 have
minimal degree in G° := G%. The choice of vertex 1 as pivot vertex x; leads to the
graph G of Example 2, G' := G = G. The pivot clique associated with x; = 1 is

Adjgo(1) = {2, 5}.
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In the next step of (4.A.4) one may choose vertex 5 as pivot vertex x,, since vertices 5
and 3 have minimal degree in G' = G. The pivot clique associated with x, =5
is Adjg:(5) = {2, 4}, and by “elimination” of x, from G' we obtain the next graph
G?:= G!. All in all, a possible sequence of pivot elements given by (4.A.4) is
(1, 5, 4, 2, 3, 6), which leads to the series of graphs (G° := G and G' ;= G are as in
example 2, G is the empty graph):

2 3 2%

=)

4* 6 6 6*
G*>=Gj G =G} G =@G? G’ =G}
The pivot vertices are marked. The associated pivot cliques are
Pivot 1 5 4 2 3 6
Clique {2,5} {2,4} {2,6} {3,6} {6} @&

The matrix PAPT = LLT arising from a permutation of the rows and columns cor-
responding to the sequence of pivots selected and its Cholesky factor L have the
following structure, which is determined by the pivot cliques (fill-in is denoted by ®):

(1 x x i 1 x x W
x X 5 x ®
PAPT = N 3 7 A 0
x 2 x x 2 x x
x 3 x 3 x
3 x x x 6 | 6

For instance, the position of the nonzero off-diagonal elements of the third row of L7,
which belongs to the pivot vertex x; = 4, is given by the pivot clique {2, 6} = Adj;.(4)
of this vertex.

For large problems, any efficient implementation of algorithm (4.A.4)
hinges on the efficient determination of the degree function deg; of graphs
G'=G.',i=1,2,...,n— 1. One could use, for instance,

Adjg (y) = Adjg(y),  degg (y) = degg(y),

since by (4.A.3) the degree function does not change in the transition G — G,
at all vertices y # x with y ¢ Adj;(x). Numerous other methods for efficiently
implementing (4.A.4) have been proposed [see George and Liu (1989) for
a review]. These proposals also involve an appropriate representation of
graphs. For our purposes, it proved to be useful to represent the graph
G = (V, E) by a set of cliques M = {K,, K, ..., K } such that each edge is
covered by at least one clique K;e M. Then the set E of edges can be
recovered:
E={{x,y}Ix#y&3i:x,ye K}
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Under those conditions, M is called a clique representation of G. Such repre-
sentations exist for any graph G = (V, E). Indeed, M := E is a clique represen-
tation of G since every edge {x, y} € E is a clique of G.

ExAMPLE 4. A clique representation of the graph G = G* of Example 2 is, for instance,

{{1, 5} {4,5}, {1, 2}, {1, 5}, {2, 3, 6}, {2, 4, 6} }.

The degree deg;(x) and the sets Adjg(x), x € V, can be computed from a

clique representation M by
Adig) = | Ko degolx) = | 4dig(x).
BXEK;

Let x € V be arbitrary. Then, because of (4.A.3), one can easily compute a
clique representation M, for the elimination graph G, of G = (¥, E) from such
a representation M = {K,, ..., K} of G: Denote by {K, , ..., K} the set of
all cliques in M that contain x, and set K := { Ji-; K, \ {x}. Then

M,={K,,...,K, K\{K,,, ..., Ky }

gives a clique representation of G,.
Assuming that cliques are represented as lists of their elements, then M,
takes even up less memory space than M because

Kl < 3 1K,

Recall now the steps leading up to this point. A suitable pivot sequence
was determined using algorithm (4.A.4). To this pivot sequence corresponds
a permutation matrix P, and we are interested in the Cholesky factor L of the
matrix PAPT (=LLT) and, in particular, in a suitable data structure for
storing L and associated information. Let Nonz(L) denote the sparsity pat-
tern, that is, the set of locations of nonzero elements of L. The nonzero
elements of L may, for instance, be stored by columns—this corresponds to
storing the nonzero elements of LT by rows—in three arrays ip, ja, a as
described at the beginning of this section. Alternatively, a linked list next may
be employed in addition to such arrays.

Because Nonz(L) > Nonz(PAPT), the data structure for L can also be used
to store the nonzero elements of A.

Next follows the numerical factorization of PAPT = LLT: Here it is impor-
tant to organize the computation of LT by rows, that is, the array a is
overwritten step by step with the corresponding data of the consecutive rows
of L. Also the programs to solve the triangular systems

Lz = Pb, LTu=2

for z and u, respectively, can be coded based on the data structure by access-
ing each row of the matrix LT only once when computing z and again only
once when computing u. Finally, the solution x of Ax = bis given by x = PTu.
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The reader can find more details on methods for solving sparse linear
systems in the literature, e.g., in Duff, Erisman, and Reid (1986) and George
and Liu (1981), where numerous FORTRAN programs for solving positive-
definite systems are also given. Large program packages exist, such as the
Harwell package MA27 (see Duff and Reid (1982)), the Yale sparse matrix
package YSMP (see Eisenstat et al. (1982)), and SPARSEPAK (see George, Liu,
and Ng (1980)).

EXERCISES FOR CHAPTER 4
1. Consider the following vector norms defined on R” (or C"):

[xlo = max x|,
1<i<n

Iela= [ S 1xl
b= 3, sl

Show:

(a) that the norm properties are satisfied by each;
(b) that x|l < x|z < x|

(c) that x|l < V/nlxlw. IxIs < /nlx]-
Can equality hold in (b), (c)?

(d) Determine what lub(4) is, in general, for the norm |- ||
(e) Starting from the definition

Ax|
lub(A) = max " =
)= s
show that

1 min 1471

wb(A" )~ %o [yl

for nonsingular A.

2. Consider the following class of vector norms defined on C™:
Ixlo= D],

where | - || is a fixed vector norm, and D is any member of the class of nonsingular
matrices.

(a) Show that |- ||p is, indeed, a vector norm.
(b) Show that m| x| < ||x|p < M|x| with

m=1/lub(D"!), M =lub(D),

where lub(D) is defined with respect to |- |.
(c) Express lubp(A) in terms of the lub norm defined with respect to | - ||.
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(d) For a nonsingular matrix 4, cond(A4) depends upon the underlying vector
norm used. To see an example of this, show that condp(A) as defined from
Il | p can be arbitrarily large, depending on the choice of D. Give an estimate
of condp(A4) using m, M.

(e) How different can cond(A4) defined using || - ||, be from that defined using
|- |27 [Use the results of Exercise 1(b, c) above.]

3. Show that, for an n x n nonsingular matrix A and vectors u, v € R",
(a)
A 'uwwTA™?

Ty-1_ g4-1 _
(A + w') T+ oTA T

ifoTA tu# -1
(b) fvTA " 'u= —1, then A + uv” is singular.
Hint: Find a vector z # 0 such that (4 + uv™)z = 0.

4. Let A be a nonsingular n x n matrix with columns a;,

A= (al, ...,a,,).

(a) Let A =(ay, ..., G-, b, @41, ..., a,), b € R" be the matrix obtained from A
by replacing the ith column g; by b. Determine, using the formula of Exercise
3(a), under what conditions 4~ ! exists, and show that A~! = FA~! for some
Frobenius matrix F.

(b) Let A, be the matrix obtained from A by changing a single element a; to
ay + a. For what o will A7 ? exist?

5. Consider the following theorem [see Theorem (6.4.10)]: If A is a real, nonsingular
n x n matrix, then there exist two real orthogonal matrices U, V satisfying

UTAV =D,
where D = diag(u;, - .., p,) and
P Z = 2 >0

Using this theorem, and taking the Euclidian norm as the underlying vector
norm:

(a) Express cond(A) in terms of the quantities ;.
(b) Give an expression for the vectors b and Ab in terms of U for which the
bounds (4.4.11), (44.12), and
2]l > lub(4)] ]

are satisfied with equality.
(c) Is there a vector b such that for all Ab in (4.4.12),

ax] _ Jab)

Il el

holds? Determine such vectors b with the help of U.
Hint: Look at b satisfying lub(4~1)||b|| = ||x]|.
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6. Let Ax = b be given with

0.780 0.563 0217
A= [0.913 0.659’ d b= [0.254

The exact solution is x” = (1, —1). Further, let two approximate solutions
xT = (0.999, —1.001),
x] = (0.341, —0.087)

be given.
(a) Compute the residuals r(x,), r(x,). Does the more accurate solution have a

smaller residual?
(b) Determine cond(A) with respect to the maximum norm, given

P 659000 — 563000
~ |-913000  780000]

(c) Express X — x = Ax using r(X), the residual for X. Does this provide an
explanation for the discrepancy observed in {(a)? (Compare with Exercise 5.)

7. Show that:
(a) The largest elements in magnitude in a positive definite matrix appear on the

diagonal and are positive.
(b) If all leading principal minors of an n x n Hermitian matrix A = (a;) are

ayy ... Qy;
det : : >0 fori=1,...,n
ay ... Q;

then A is positive definite.

positive, i.e.,

Hint: Study the induction proof for Theorem (4.3.3).
Let A’ be a given, n x n, real, positive definite matrix partitioned as follows:
A B
A =
& 2
where A is an m x m matrix. First, show:
(a) C — BTA™ 1B is positive definite.

[Hint: Partition x correspondingly:

x _
X = ’], x; € R™, x,eR"™™

X2

and determine an x, for fixed x, such that
xTA'x = x3(C — B"TA"'B)x,

holds.]
According to Theorem (4.3.3), A’ has a decomposition

A" =R'R,
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10.

where R is an upper triangular matrix, which may be partitioned consistently
with A’

R = [Ru Ru]_

0 R3,

Now show:

(b) Each matrix M = N”N, where N is a nonsingular matrix, is positive definite.
(C) R;z Rzz = C - BTA—IB.

(d) The result

r2>0, i=1...,n,

follows from (a), where r; is any diagonal element of R.

)
2 > min {ifL{ _____}44‘%
i = XTx lub(R™1)?
fori=1,..., n, where lub(R™!) is defined using the Euclidian vector norm.
Hint: Exercise 1(e).
(f)
TAr
lub(R)? = max X Tx =rk, i=1,...,n
x+0 XX

for lub(R) defined with the Euclidian norm.
(g) cond(R) satisfies

Tii

Tk

cond(R) > max

1<i,k<n

. A sequence A, of real or complex r x r matrices converges componentwise to a

matrix 4 if and only if the A, form a Cauchy sequence; that is, given any vector
norm |- || and any ¢ > 0, lub(4, — A4,) < ¢ for m and n sufficiently large. Using
this, show that if lub(4) < 1, then the sequence A" and the series Yo, A"
converge. Further, show that I — 4 is nonsingular, and

I—Ayt= Y

Use this result to prove (4.4.14).

Suppose that we attempt to find the inverse of an n x n matrix A using the
Gauss-Jordan method and partial pivot selection. Show that the columns of 4
are linearly dependent if no nonzero pivot element can be found by the partial
pivot selection process at some step of the method.

[Caution: The converse of this result is not true if floating-point arithmetic is used.
A can have linearly dependent columns, yet the Gauss-Jordan method may
never encounter all zeros among the candidate pivots at any step, due to round-
off errors. Similar statements can be made about any of the decomposition
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methods we have studied. For a discussion of how the determination of rank (or
singularity) is best made numerically, see Chapter 6, Section 6, of Stewart (1973).]

11. Let A be a positive definite n x n matrix. Let Gaussian elimination be carried out

on A without pivot selection. After k steps of elimination, 4 will be reduced to the
form

AN Al

* _
4 [0 A% |

where A% is an (n — k) x (n — k) matrix. Show by induction that

(a) A% is positive definite,
b) ad¥ <a¥tVfork<i<nmk=12...,n-1

12. In the error analysis of Gaussian elimination (Section 4.5) we used certain esti-
mates of the growth of the maximal elements of the matrices A”. Let

a;=max |a¥], AY:=(a¥).
Show that for partial pivot selection:

(@) a < 2*ag, k=1, ..., n— 1 for arbitrary A.
(b) a, <kag,k=1,..., n— 1 for Hessenberg matrices A.
(¢) a =max, <x<,-1 & < 2a, for tridiagonal matrices A.

13. The following decomposition of a positive definite matrix A,
A = SDS",

where S is a lower triangular matrix with s; =1 and D is a diagonal matrix
D = diag(d;), gives rise to a variant of the Cholesky method. Show:

(a) that such a decomposition is possible [Theorem (4.3.3)];

(b) that d; = (I;)%, where A = LL" and L is a lower triangular matrix;

(c) that this decomposition does not require the n square roots which are required
by the Cholesky method.

14. We have the following mathematical model:
y=x1z+ X3,

which depends upon the two unknown parameters x;, x,. Moreover, let a collec-
tion of data be given:

i, zth=1,...m Withz; =1
Try to determine the parameters x,, x, from the data using least-square fitting.

(a) What are the normal equations?

(b) Carry out the Cholesky decomposition of the normal equation matrix
B=ATA=LI"

(c) Give an estimate for cond(L) based upon the Euclidian vector norm.

[Hint: Use the estimate for cond(L) from Exercise 8(g).]

(d) How does the condition vary as m, the number of data, is increased [Schwarz,
Rutishauser, and Stiefel (1968)]?
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15. The straight line
y(x) =a + Bx
is to be fitted to the data
X; I -2 -1 0 1t 2

Vi lO.S 05 2 35 35
so that

; (x:) — v

is minimized.
Determine the parameters o and B.

16. Determine x and § as in Exercise 15 under the condition that
Z | v(xi) = il

is to be minimized.

[Hint: Let p; —o; = y(x;)— y; fori=1, ..., 5, where p; > 0 and o, > 0. Then
i ly(xi) = vi| = Y. (pi + a.). Set up a linear programming problem in the var-
iables «, B (unrestricted) and p;, o; (nonnegative).]
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Finding Zeros and Minimum
Points by Iterative Methods

Finding the zeros of a given function f, that is arguments ¢ for which
f(&)=0, is a classical problem. In particular, determining the zeros of a
polynomial (the zeros of a polynomial are also known as its roots)

p(x)y=ao +a;x +- - +a,x"

has captured the attention of pure and applied mathematicians for centuries.
However, much more general problems can be formulated in terms of
finding zeros, depending upon the definition of the function f: E — F, its
domain E, and its range F.

For example, if E = F = R", then a transformation f: R* — R" is described
by n real functions fi(x', ..., x") of n real variables x!, ..., x" (we will use
superscripts in this chapter to denote the components of vectors x € R,
n > 1, and subscripts to denote elements in a set or sequence of vectors x;,
i=12..)

filxt, ., x™)
f(x)=[ : ], xT=(x!, ..., x").
fulx?, oo, x™)

The problem of solving f(x) = 0 becomes that of solving a system of (nonlin-
ear) equations:

(5.0.1) filx* ..., x")=0, i=1..,n

Even more general problems result if E and F are linear vector spaces of
infinite dimension, e.g. function spaces.
Problems of finding zeros are closely associated with problems of the
form
minimize h(x)
xeR"

260
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for a real function h: R" — R of n variables h(x) = h(x*, x?, ..., x"). For if h
is differentiable and g(x):= (0h/dx?, ..., 0h/dx")T is the gradient of h, then
each minimum point x of h(x) is a zero of the gradient g(x) = 0. Conversely,
each zero of f (5.0.1) is also the minimum point of some function h, for
example h(x) = | / (9|

The minimization problem described above is an unconstrained minimi-
zation problem. More generally, one encounters constrained problems such
as the following:

minimize hy(x)
subject to

h(x)<0 fori=1,2,...,m,,
h(x)=0 fori=m,+1,m +2,....m.

Finding minimum points for functions subject to constraints is one of the
most important problems in applied mathematics. In this chapter, however,
we will consider only unconstrained minimization. The special case of con-
strained linear minimization, for which all h;: R" —» R are linear (or, more
exactly, affine) functions has been discussed in Sections 4.10 and 4.11. Fora
more thorough treatment of finding zeros and minimum points the reader is
referred to the extensive literature on that subject [for example Ortega,
Rheinboldt (1970), Luenberger (1973), Himmelblau (1972), Traub (1964)].

5.1 The Development of Iterative Methods

Usually it is not possible to determine a zero ¢ of a function f: E— F
explicitly within a finite number of steps, so we have to resort to approxima-
tion methods. These methods are usually iterative and have the following
form: beginning with a starting value x,, successive approximates x;, i = 1,
2, ..., to & are computed with the aid of an iteration function ®: E > E:

X;+1 = O(X;), i=012,...

If ¢ is a fixed point of @ [®(¢) = £], if all fixed points of ® are also zeros of f,
and if ® is continuous in a neighborhood of each of its fixed points, then
each limit point of the sequence x;, i=1, 2, ..., is a fixed point of @,
and hence a zero of f.

The following questions arise in this connection:

(1) How is a suitable iteration function ® to be found?
(2) Under what conditions will the sequence x; converge?
(3) How quickly will the sequence x; converge?

Our discussion of these questions will be restricted to the finite-dimensional
case E=F=R"
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Let us examine how iteration functions ® might be constructed.
Frequently such functions are suggested by the formulation of the problem.
For example, if the equation x — cos x = 0 is to be solved, then it is natural
to try the iterative process

X;4+1 = COS X;, i=0,12,...,

for which ®(x):=cos x.
More systematically, iteration functions @ can be obtained as follows: If &
is the zero of a function f: R — R, and if f is sufficiently differentiable in a
neighborhood A" (£) of this point, then the Taylor series expansion of f about
Xo € A7(E) is
xo)z

(@)= 0=f(xo) + (¢ — xo)f" (xo)+(—~ L
xo)k

+ F®(xo + HE — xo)), 0<3<1

If the higher powers (¢ — x,)" are ignored, we arrive at equations which
must express the point £ approximately in terms of a given, nearby point x,,
e.g.

(5.11) 0=/ (xo) + (€ — x0)f(xo0)
or
- T g (6 ) ;
(5.12) 0= f(xo) + (& — x0)f'(x0) + =57 f"(x0)-
These produce the approximations
5 _ f(xO)
F= %0 Filxy)

and

f'(xo0) £ \/(f (xo))z 2f(xo)f”(xo)
S (Xo)
respectively. In general Z, & are merely close to the desired zero: they must be

corrected further, for instance by the scheme from which they were them-
selves derived. In this manner we arrive at the iteration methods

2=Xo

Xiv1 = O(x;), Q(x),zx_j%’
(5.1.3) ”
Xiv1 = Dr(x;), @, (x)=x f (x) £ \/‘(X))2 -2f x)f (x )

ll(x)
The first is the classical Newton-Raphson method. The second is an obvious

extension. In general such methods can be obtained by truncating the Taylor
expansion after the (£ — x,)’ term. Geometrically these methods amount to
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Rytx)

ox
x

fx) )

Figure 5 Newton—Raphson methods (5.1.3).

replacing the function f by a polynomial of degree v, P,(x) (v=1, 2, ...),
which has the same derivatives f®(x,), k =0, 1, ..., v, as f at the point xq.
One of the roots of the polynomial is taken as an approximation to the
desired zero £ of f. (See Figure 5.)

The classical Newton-Raphson method is obtained by linearizing f.
Linearization is also a means of constructing iterative methods to solve
equation systems of the form

LGN, x")
(5.1.4) flx) = [ : ] —o0.
fi(xY .., x")

If we assume that x = £ is a zero for f, that x, is an approximation to £, and
that f is differentiable for x = x, then to a first approximation

0= /(&) = f(xo) + Df (xo)& — Xo),

where
afl afl 1 1
ox' T ox" & =%
(5.1.5)  Df(xo)= f af s E—Xxo=
a n n n _
b; e ‘a’;l x=x0 é x’(l)

If the Jacobian Df(x,) is nonsingular, then the equation
S (x0) + Df (xo)(x; — x0) =0

can be solved for x,:

x; = xo — (Df (x0))™ ' (xo)
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and x; may be taken as a closer approximation to the zero ¢. The gener-
alized Newton method for solving systems of equations (5.1.4) is given by

(5.1.6) Nior=x;— (DF () (%)  i=01,2, ...

In addition to Newton’s method for such equation systems there are, for
example, generalized secant methods [see (5.9.7)] for functions of many var-
iables, and there are generalizations to nonlinear systems of the iteration
methods given in Chapter 8 for systems of linear equations. A good survey
can be found in Ortega and Rheinboldt (1970).

5.2 General Convergence Theorems

In this section we will study the convergence behavior of a sequence x; which
has been generated by an iteration function ®:

X,-+1:=(D(X;). i=0, l. 2,...,

in the neighborhood of a fixed point ¢ of ®. We will concentrate on the case
E = R" rather than considering general normed linear vector spaces. Using a
norm | - || on R" we can measure the difference between two vectors x, y € R”
by ||x — y||. A sequence of vectors x; € R" converges to a vector x if for each
¢ > 0 there is an integer N(¢) such that

x;— x| <& foralll> N(e).

It can be shown that this definition of the convergence of vectors in R" is
independent of the chosen norm [see Theorem (4.4.6)]. Finally, it is known
that the space R" is complete in the sense that the Cauchy convergence
criterion is satisfied:

A sequence x; € R" is convergent if and only if for each ¢ > 0 there exists an
N(&) such that ||x; — x,, || < ¢ for all |, m = N(g).

Let @ be an iteration function on R". Let ¢ be a fixed point of ®. For all
initial vectors x, taken from a neighborhood .4'(¢) and for the generated
sequence x;,; = ®(x;), i =0, 1, ..., let an inequality of the form

[xis1 =& < Cllx; = €|

hold for all i > 0, where C < 1if p = 1. Then the iteration method defined by
® is said to be a method of at least pth order for determining ¢. The following
is easily shown:
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(5.2.1) Theorem. Each method of at least pth order for determining a fixed
point & is locally convergent, in the sense that there is a neighborhood A" () of
Ewith the property that for all initial x, € /°(&), the sequence x; generated by ®
converges to C.

[If #°(¢) can be taken as R", then the method is said to be globally
convergent ]

In the one-dimensional case, E = R, the order of a method defined by ®
can often be determined if @ is sufficiently often differentiable in the neigh-
borhood W'(¢). If x; € #(¢) and if ®¥(E)=0fork=1,2,...,p— 1, but
®P(&) + 0, it follows that

xeer = 0() = 0(0) + 1 L) 1 o - ey

. Xig— ¢ OP()
1 il SR, =7
u—l»I: (v, — &y p!

For p =2, 3, ... the method is of (precisely) pth order. A method is of first
order if, besides p = 1, it is true that |®'(¢)| < 1.

ExaMPLE 1. E = R, @ is differentiable in a neighborhood A°(¢). If 0 < @'(¢) < 1, then
convergence will be linear (first order). In fact, the x; will converge monotonically to
£. (See Figure 6.)

If —1 <®(E) <0, then the x; will alternate about ¢ during convergence (see
Figure 7).

o)

1
is2 §

T
1
I
I
1
|
|
|
x

x

x ¥

(3]

Figure 6 Monotone convergence.
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dix)

of ST

x V¥

0 i xloi ;

Figure 7 Alternating convergence.

ExaMpLE 2. E = R, ®(x) = x — f(x)/f"(x) (Newton’s method). Assume that f has a
sufficient number of continuous derivatives in a neighborhood of the simple zero ¢ of

fie. f'(S) # 0]. It follows that

o) =<
woy - S
(D(\) (f( ))2 _ 0‘
oy AE)
() = 1)

Newton’s method is at least locally quadratically (second order) convergent.

ExaMPLE 3. In the more general case that ¢ is an m-fold zero of £, i.e
) =0 forv=0,1,....m—1,
then f'and f” have a representation of the form
fx)=(x=3"g(x). 9(&)#0.
[(x)=m(x = &y g(x) + (x = &Jg'(x).
with a differentiable function g. It follows that

f(x) (x — &g(x)

bx)=x—-—5—" =x N
(=50 = mgle) + (- ')
and therefore
L. 1
PE)=1- .
Thus for m > 1—that is, for multiple zeros of f—Newton’s method is only linearly

convergent.
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The following general convergence theorems show that a sequence x;
generated by ®@: E — E will converge to a fixed point ¢ of @ if ® is a contrac-
tive mapping. As usual, ||| represents some norm on E = R".

(5.2.2) Theorem. Let the function ®: E—E, E= R" have a fixed point
& ®(E) = & Further let S,(¢)={z| |z — &| < r} be a neighborhood of & such
that ® is a contractive mapping in S,(&), that is,

lo(x) — o) < K|}x —y|
for all x,yeS, () Then for any xq € S/(E) the generated sequence
Xis1=®(x;),i=0, 1,2, ..., has the properties
(@) x;e S, (&) foralli=0,1,...,
(0) fIxivs — &l < Kfxi = & < K™ Hxo — ¢

ie., {x;} converges at least linearly to ¢.

R 0<K<«1,

>

Proor. The proof follows immediately from the contraction property.
Properties (a) and (b) are true for i = 0. If we assume that they are true for
j=0,1, ..., i then it follows immediately that

|xis 1 = &[ = [|@(x;) — ®(S)

< K|x; — & < Kxo — ElL=r. O

The following theorem is more precise. Note that the existence of a fixed
point is no longer assumed a priori.

(5.2.3) Theorem. Let ®: E — E, E = R" be an iteration function, x, € E be a
starting point, and x;,,=®(x;), i=0, 1,.... Further, let a neighborhood
S.(xo)={x|||x — Xo|| <1} of xo and a constant K,0 < K < 1, exist such that

(@) [®(x) — DY) < K|x — y| for all x, y € S,(xo)={x||x — x| <1},
() [Ixy = xo | = |®(xo) = xo | < (1 = K)r <.

Then it follows that

(1) x;€ S,(xo) foralli=0,1, ..., L
(2) @ has exactly one fixed point ¢, ®(¢) = &, in S,(x,), and

_lim x; =4, ”~\’.'+1 - 5” < K"xi - f”,
as well as

=gl < g Sl = wol.

Proor. The proof is by induction.

(1): From (b) it follows that x, € §,(x,). If it is true that x; € S,(x,) for
j=0,1,...,iand i > 1, then (a) implies

(524) [Ixis 1 = x| = [|00x;) — Blx;— )| < Kx; = x;24 || < K| x; = %o,
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and therefore, from the triangle inequality and from (b),
Ixies = xof| S lxivy = x| + i = xia |+ + lxa — x|
<K'+ K7 4+ 1)xy — xo
SA+K++K)Y1-Kr=(1-K*)y<r

(2): First we show that {x;} is a Cauchy sequence. From (5.2.4) and from
(b) it follows for m > I that

(52.5)  [xm = ol < lIxm = X | F [¥m— 1 = X2 |+ + [lxi 0 — x|
<K@+ K+ + K" x, — xo
Kl
<3 K|[\1—\0|]<K';

Because 0 < K < 1, we have K'r < ¢ for sufficiently large | > N(g). Hence
{x;} is a Cauchy sequence. Since E = R" is complete, there exists a limit

lim N = :.

i—»w

Because x; € S,(x,) for all i, ¢ must lie in the closure S,(x,). Furthermore ¢ is
a fixed point of ®, because for all i >0

19(C) = &f| < @) — ()| + [[D(x;) — <]
< Kf& = xifl + lxien =€
Since lim; ., ||x; — & = 0, it follows at once that ||®() — ¢|| = 0, and hence

D)= <.
If ¢ € §,(x,) were another fixed point of @, then

|2 = &) = o) — Q)] < K¢ - §

L}

0 < K < 1, which implies that || — &|| = 0.
Finally, (5.2.5) implies

. K!
€= x| = lim ||x,, — x| < Tk Iy = Xol

—_— 1

and

i1 = €[l = [@(x;) = @) < K|xi = ¢

)

which concludes the proof. [
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5.3 The Convergence of Newton’s Method in Several
Variables

Consider the system f(x) = 0 given by the function f: R" —» R". Such a func-
tion is said to be differentiable at a point x, € R" if an n x n matrix A exists
for which

L) = f(x0) = Alx = o)l _ .

lim YT -
x-+x0 Ix = xol|

In this case A agrees with the Jacobian matrix Df (x,) [see (5.1.5)].
We first note the following

(5.3.1) Lemma. If Df (x) exists for all x in a convex region Co = R", and if a
constant 7 exists with

|Df(x) — Df (y)]| <7

then for all x, y € C the estimate

x—y| forall x,yeCy,

1F() = £ ) = DFO)ee = )] <4 v = o2
holds.
(Recall that a set M = R" is convex if x, y € M implies that the line
segment [x, y]:=={z = Ax + (1 — A)y|0 < A < 1} is contained within M.)
ProoF. The function ¢: [0, 1] — R" given by

o(t)=f(y+t(x —y))

is differentiable for all 0 <t < 1, where x, y € C, are arbitrary. This follows
from the chain rule:

@'(t) = Df (y + t(x — y))x — »).
Hence it follows for 0 <t < 1 that
lo'(t) = @' (0)| = [(Df (v + t(x = y)) = DF ())(x — y)|
<|IDf(y + tlx = y)) = DF )| llx — ¥l
<tflx - ylf%.
On the other hand,
A=f(x) = f(y) = Df (y)(x — y) = @(1) — ¢(0) — ¢'(0)

= [ @ - oo
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so the above inequality yields

.1 1

A1 <] o)~ o) de < vlx = yf* | v
= Slx =y

This completes the proof. O

We can now show that Newton’s method is quadratically convergent:

(5.3.2) Theorem. Let C < R" be a given open set. Further, let Cq be a convex
set with Cy < C, and let f: C — R" be a function which is differentiable for all
x € Cy and continuous for all x € C.

For xo € Cy let positive constants r, a, B, 7, h be given with the following
properties:

S,(xo)={x|[x = xo|| <7} € Co,
h=afy/2 <1,
r=a/(1 — h),
and let f(x) have the properties
(@) |Df (x) = DF () < vlx = y| for all x, y € Cq

(b) Df(x)* exists and satisfies | Df (x)™ || < B for all x € C,
(©) [IDf (xo)™f (xo)l| < .

Then
(1) Beginning at x,, each point
‘Yk+l = X’k h Df‘(x'k)_ l_f(.Yk), k = 0, 1, DY

is well defined and satisfies x, € S,(xo) for all k > 0.
(2) limy_ o x, = ¢ exists and satisfies ¢ € S,(xo) and f () = 0.
(3) Forallk>0

2+t
T h

Since 0 < h < 1, Newton’s method is at least quadratically convergent.

e = &Jl < a

PROOF. (1): Since Df (x)~! exists for x € Cy, x;,, is well defined for all k if
x; € S,(x,) for all k > 0. This is valid for k = 0 and k = 1 by assumption (c).
Now, if x; € S,(xo) for j=0, 1, ..., k, then from assumption (b)

%y = Xill = | =Df (x) ™ (x| < BILf ()
= ﬂ”f(xk) _f(xk—l) — Df (xg— 1)k — x,‘_,)”,
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since the definition of x, implies

Sla-1) + Df(xi— 1 )5k — x4-1) = 0.
But, according to Lemma (5.3.1),

2

L)

(5.3.3) %+ 1 — x| <% e — Xi—y

and therefore
(5.3.4) X1 — x| Sah®- L

This last inequality is correct for k = 0 because of (c). If it is correct for
k > 0, then it is correct for k + 1, since (5.3.3) implies

R I e R

Furthermore, (5.3.4) implies
IXis s = Xoll < 1w s = %]l + % = x| + -+ [lxg = X0
Sal+h+m+h"+-+h Y<a/(l —h)=r,

and consequently x, ., € S,(xo).

(2): From (5.3.4) it is easily determined that {x;} is a Cauchy sequence,
since for m > n we have

me+1 - X,,” < H'\'rn+l = Xm “ + n-\‘m T Nm-1 " ++ “erl — X "
(5.3.5) <ah® Y1 + k¥ + (h?")? + )
ahz"—l
< ij F, <e

for sufficiently large n > N(g), because 0 < h < 1.
Consequently, there is a limit

lim x, = ¢ € S,(x,),

whose inclusion in the closure follows from the fact that x, € S,(x,) for all
k=0.
By passing to the limit m — oo in (5.3.5) we obtain (3) as a side result:

Iimi|x, —x, | =|—x E -
m_.w“ m n“ “‘ n“ 1= K2

We must still show that ¢ is a zero of f'in S,(x,).
Because of (a), and because x; € S,(x,) for all k > 0,

[1Df (xk) = Df (xo0)l| < 7]|xx — X0l < yr,
and therefore

IDf (xi)l| < yr + [|f (xo)|| =K.
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The inequality
1 )l < Kl%es s — %)

follows from the equation
F(x) = —Df (i )i+ 1 — xi)-
Hence

lim || f(x)] =0,
k— o0
and, since f is continuous at ¢,
klim £ Gl =) =0,

ie., ¢ is a zero of f. 0

Under somewhat stronger assumptions it can be shown that ¢ is the only
zero of fin S,(xo):

(5.3.6) Theorem (Newton-Kantorovich). Given the function f: C < R" - R"
and the convex set Co < C, let f be continuously differentiable on C, and
satisfy the conditions
(a) [Bf(x) - DfO)| <7lx =yl for all x, y € Co.
(b) [|Df (x0) ™ f (xo)|| < .
© [Df(xo) 1] <.
for some x, € C,. Consider the quantities
h=afy,

1FJ/1-2h
1‘1.2 :=7h’ d

If h <% and S, (xo) = Co, then the sequence {x,} defined by
Xier1 =N — D ()" (i) fork=0,1, ...

remains in S, (xo) and converges to the unique zero of f(x) in Cy 0 S,,(xo).

For the proof see Ortega and Rheinboldt (1970) or Collatz (1968).

54 A Modified Newton Method

Theorem (5.3.2) guarantees the convergence of Newton’s method only if the
starting point x, of the iteration is chosen “sufficiently close ” to the desired
solution ¢ of

f(x)=0, f R">R"
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The following example shows that Newton’s method may diverge otherwise.

ExampLE. Let f: R — R be given by f(x) = arctan x. Then ¢ =0 is a solution of
f(x)y=0.
The Newton iteration is defined by
X1 =X — (1 + x}?) arctan x;.

If we choose x, so that

2 | Xo |
arctan |xo| > T3
then the sequence {|x;|} diverges: lim,, | x| = 0.

We describe a modification of Newton’s method for which global conver-
gence can be proven for a large class of functions f. The modification in-
volves the introduction of an extra parameter 4 and a search direction s to
define the sequence

(5.40.1) Xpa1 =X — AiSks

where typically s, :==d, = [Df (x,)]” *f(x.), and the A, are chosen so that the
sequence {h(x,)}, h(x) = f(x)"f (x), is strictly monotone decreasing and the x;
converge to a minimum point of h(x). (Compare this with the problem of
nonlinear least-squares data fitting mentioned in Section 4.8.)

Since h(x) > 0 for all x,

h(Z)=0 < f(¥)=0.

Every local minimum point X of h which satisfies h(x) = 0 is also a global
minimum point X of h as well as a zero of f.

In the following section we will consider first a few general results about
the convergence of a class of minimization methods for arbitrary functionals
h(x). These results will then be used in Section 5.4.2 to investigate the con-
vergence of the modified Newton method.

5.4.1 On the Convergence of Minimization Methods

Let ||-|| be the Euclidean vector norm and 0 < y < 1. We consider the set
54.1.1) D(y, x) := {s e R"}|Is|| = 1 with Dh(x)s > y||Dh(x)}|}

of all directions s forming a not-too-large acute angle with the gradient

Dh(x) = (ah(x) 6h(x))’ where x = (x!, ..., x")\.

oxt T axn

The following lemma shows, given an x, under what conditions a scalar A and
an s € R" exist such that h(x — As) < h(x).
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(54.1.2) Lemma. Let h: R" > R be a function whose gradient is defined and
continuous for all x € V(x) in a neighborhood V(x) of . Suppose further that
Dh(x) # 0, and let 1 > y > 0. Then there is a neighborhood U(x) < V(x) of x

and a number >0 such that h(x — ps) < h(x) — (uy/4)|Dh(x)| for all
xe U(X),seD(y, x),and 0 < u < A.

PRrROOF. The set
U'(3) = x € V(3)|[1DH(x) - Dh(R)] < [DkG3) |

is nonempty and a neighborhood of %, since Dh(x) # 0 and since Dh(x) is
continuous on V(x). Similarly

U2 (%)= {x € V(%)|D(, x) < D(%, x)=

is nonempty and a neighborhood of x. Choose a A > 0 so that
2 = x| Jx - %] <24} € UM(®) n UP()
and let
U) =50 = {x| x - %] < 4.
Then if x € U(X), 0 < u < 4, s € D(y, x), there exist 6, 0 < 0 < 1 such that
h(x) — h(x — ps) = uDh(x — Ops)s
= p[(Dh(x — Ous) — Dh(X))s + Dh(X)s].

Since x € U(X) implies x, x — us, x — Ous € U' n U2, it follows that

h(x) = h(x = us) > — EL | Dh(®)] + uDh(R)s
> — Y 1D + 12 [ Dh(R)|

wy -
=7 | Dh()|. 0

We consider the following method for minimizing a differentiable func-
tion h: R" - R.

(5.4.1.3).
(a) Choose numbers y,, oy, k=0, 1, ..., with

sup % < 1, inf y, > 0, inf ¢, > 0,
k k k

and choose a starting point x, € R".
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(b) For allk =0, 1, ..., choose an s, € D(y,, x;) and set
Xps1 =X — LSy
where 4, € [0, o, | Dh(x,)|]] is such that
(X1 1) = m"in {h(xx — ps)|0 < p < o[ Dh(xi)[[}-

The convergence properties of this method are given by the following

(5.4.1.4) Theorem. Let h: R" > R be a function, and let x, € R" be chosen so
that

(a) K={x|h(x)< h(x,)} is compact, and
(b) h is continuously differentiable in some open set containing K.

Then for any sequence {x,} defined by a method of the type (5.4.1.3):

(1) x, € Kforallk=0,1,....{x,} has at least one accumulation point X in K.
(2) Each accumulation point of {x,} is a stationary point of h:

Dh(%) = 0.

Proor. (1): From the definition of the sequence {x,} it follows immediately
that the sequence {h(x,)} is monotone: h(x,) > h(x,) = ---. Hence x, € K for
all k. K is compact; therefore {x,} has at least one accumulation point X € K.

(2): Assume that X is an accumulation point of {x,} but is not a stationary
point of h:

(5.4.1.5) Dh(x) # 0.
Without loss of generality, let lim,., x,=X. Let y:=inf, 3 >0,
o:=inf; g, > 0.

According to Lemma (5.4.1.2) there is a neighborhood U(X) of X and a
number 4 > 0 satisfying

(54.16) hx — ps) < h(x) = g [ DH(R)|

for all x € U(x), s € D(y, x), and 0 < u< A
Since lim, ., ,, x, = X, the continuity of Dh(x), together with (5.4.1.5), im-
plies the existence of a k, such that for all k > k,

(@) x; € U(X),
(b) [|Dh(x)|| = 3| Dh(%)].

Let A =min{4, 36| Dh(x)||}, £ = A(y/4)||Dh(X)| > 0. Since g, > a, it fol-
lows that [0, A] < [0, 6, | Dh(x,)||]] for all k >k,. Therefore, from the
definition of x, .,

h(xy+1) < minfh(x, — psi) |0 < pu < A}
u
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Since A < A, x; € U(X), s, € D(%, x) € D(3, x,), (5.4.1.6) implies that
Ay _
hixis 1) < h(xi) — 4 IDAR)|| = h(xi) — &

for all k > k,. This means that lim,_ . h(x,) = —oo, which contradicts
h(x;) = h(x, 1) = - = h(x). Hence, X is a stationary point of h. O

Step (b) of (5.4.1.3) is known as the line search. Even though the method
given by (5.4.1.3) is quite general, its practical application is limited by the
fact that the line search must be exact, i.e., it requires that the exact mini-
mum point of the function

@(p) = h(x, — psi)

be found on the interval [0, g, | Dh(x,)|] in order to determine x, ., ;. Gen-
erally a great deal of effort is required to obtain even an approximate mini-
mum point. The following variant of (5.4.1.3) has the virtue that in step (b)
the exact minimization is replaced by an inexact line search, in particular by
a finite search process:

(5.4.1.7).
(@) Choose numbers 7, , o, k =0, 1, ..., so that

sup % < 1, inf 3, > 0, inf g, > 0.
k k k

Choose a starting point x, € R".
(b) For each k =0, 1, ... obtain x, ., from x, as follows:
(x) Select

Sk € D(h, Xi),
define

Ok =gy ”Dh(\'k) R hk(“) = h(xk - ﬂsk),

and determine the smallest integer j = 0 such that

hi(p277) < i (0) — sz—jlzk [ Dh(x)l-
(B) Determine ie{0,1,...,j} such that h,‘(p,‘2’7) is minimum, and let
Xpo1 = Xx — A Sy, where 4, ==p 27",

[Note that h(x;, ) = ming<;<; h(px 27 )]

It is easily seen that an integer j > 0 exists with the properties (5.4.1.7ba):
If x, is a stationary point, then j = 0. If x, is not stationary, then the existence
of j follows immediately from Lemma (5.4.1.2) applied to X :== x, . In any case
j (and ;) can be found after a finite number of steps.
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The modified process (5.4.1.7) satisfies an analog to (5.4.1.4):

(5.4.1.8) Theorem. Under the hypotheses of Theorem (5.4.1.4) each sequence

{xi} produced by a method of the type (5.4.1.7) satisfies the conclusions of
Theorem (5.4.1.4).

PRrROOF. We assume as before that x is an accumulation point of a sequence
{x;} defined by (5.4.1.7), but not a stationary point, i.e.,

Dh(x) # 0.

Again, without loss of generality, let lim x, = X. Also let ¢ :=inf; ¢; > 0,
y:=infy y, > 0. According to Lemma (5.4.1.2) there is a neighborhood U(X)
and a number A > 0 such that

(54.19) h(x — ps) < h(x) — ,43;41 |IDA()|

for all x € U(xX), s € D(y, x), 0 < u < A. Again, the fact that lim, x, = x, that
Dh(x) is continuous, and that Dh(x) # 0 imply the existence of a k, such that

(5.4.1.10a) X € U(X),
(5.4.1.10b) |Dh(x,)| = 4| Dh(%)],

for all k > k.
We need to show that there is an ¢ > 0 for which

h(xx+1) < h(x) — eforall k > k.

Note first that (5.4.1.10) and 7, > y imply
wl Dh(x)| = 5 IDh(x)| for all k > ko.
Consequently, according to the definition of x,,, and j
(54111) (%, 1) < M2 77) < h(xy) — pkz—j% IDA(x)]
< h(x) = p27§ |DA)].
Now let j > 0 be the smallest integer satisfying
(5.4.1.12) (P 277) < h(xy) — p,‘2_7% | DA(x)].

According to (5.1.1.11), j < j, and the definition of x, ., ; we have
(54.1.13) h(Xe 1) < (pe 279).
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There are two cases:
Case 1, j= 0. Let p,==a, |Dh(x,)|, and note that p, > a/2|Dh(X)|. Then
(54.1.12) and (5.4.1.13) imply

h(xe+ 1) < h(x) = o L | DR(D)|

< h(xy) = 72 | D)) = hixi) — &,

with ¢; > 0 independent of x, .

Case 2,j > 0. From the minimality of j we have

(P2~ T 1) > hix,) — pkz—‘T-“% IDh(x)

> h(x) — p 279 ”% 1DA(X)].
Because x, € U(x) and s, € D(}4, x;) € D(y, x;), it follows immediately from
(5.4.1.9) that
pkz—(f— Ny
Combining this with (5.4.1.12) and (5.4.1.13) yields

1) < n(pr27) < hw) — 22 |DAGE)] = () — o2

with ¢, > 0 independent of x, .
Hence, for ¢ = min(e,, ¢,)
h(xks1) < hlxi) — €

for all k > k,, contradicting the fact that h(x;) > h(x) for all k. Therefore X is
a stationary point of h. O

5.4.2 Application of the Convergence Criteria to the
Modified Newton Method

In order to solve the equation f(x) = 0, we let h(x) = f(x)"f(x) and apply
one of the methods (5.4.1.3) or (5.4.1.7) to minimize h(x). We use the Newton
direction

_ 4
ldu]l”

as the search direction s, to be taken from the point x, . This direction will be
defined if Df (x,)~ ! exists and f(x;) # 0. (|| - | denotes the Euclidian norm.)

dy = Df (xi)” ' (%), Sk



54 A Modified Newton Method 279

To apply the theorems of the last section requires a little preparation. We
show first that, for every x such that

d=d(x)=Df(x)"'f(x) and s=s(x)=

exist [i.e., Df (x)~! exists and d # 0], we have

lldll

1

(5421) s€E D('}v’ x) for all0 < 7 < ')T(X), ’7(-") ;=E;)?dTl—)7(—x—)) .

In the above,

IDf (x)| := lub(Df (x))
cond(Df (x)) = ||Df (x)~*|| || Df (x)|

are to be defined with respect to the Euclidian norm.

and

PROOF. Since h(x) = f(x)"f(x), we have
(5422) Dh(x) = 2f T(x)Df (x).
The inequalities
ARG < IDFE) 1S I,
IDf ()= )l < IBF ) H A
clearly hold, and consequently
Dh(x}s _ f()'DfX)Df(x)""f(x) 1
DRG]~ D7 () ) /7 ()DF ()] ~ cond(DF(x)) ~

Now, for all y with0 < y < 1/cond(Df (x)), it follows that s € D(y, x) accord-
ing to the definition of D(y, x) given in (5.4.1.1). O

As a consequence of (5.4.2.2) we observe: If Df(x)™! exists, then
(5.42.3) Dh(x)=0 <> f(x)=0,

i€, x is a stationary point of h if and only if x is a zero of f.

Consider the following modified Newton method [compare with
(54.1.7)]:

(54.2.4).

(@) Select a starting point x, € R".
(b) For eachk =0, 1, ... define x,. , from x, as follows:

() Set
di'=Df (x,) " 'f (%),
1

" Cond(Df ()’
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and let hy(t):= h(x, — td,), where h(x):=f(x)'f(x). Determine the
smallest integer j > 0 satisfying

M2 ) < 1(0) = 277 ]| D))

(B) Determine A, so that h(x, ) = ming<;<; M (277), and let

Xt 1= X — Agd.

As an analog to Theorem (5.4.1.8) we have

(5.4.2.5) Theorem. Let f: R" — R" be a given function, and let x, € R" be a
point with the following properties:

(a) The set K +={x|h(x) < h(xo)}, where h(x):=f(x)"f(x), is compact ;
(b) fis continuously differentiable on some open set containing K ;
(c) Df(x)"! exists for all x € K.

Then the sequence {x,} defined by (5.4.2.4) is well defined and satisfies the
following :

(1) x;e K for all k=0, 1, ..., and {x,} has at least one accumulation point
xe K.
(2) Each accumulation point X of {x,} is a zero of f, f(x) = 0.

PRrOOF. By construction, {h(x,)} is monotone:
h(XO) 2 h(xl) 2 et

Hence x, € K, k=0, 1, .... Because of assumption (c), d, and 7y, are well
defined if x, is defined. From (5.4.2.1)

8, € D(yx, X

where s, :=d, /|\d |

As was the case for (5.4.1.7), there is a j > 0 with the properties given in
(5.4.2.4). Hence x,., is defined for each x,.

Now (5.4.2.4) becomes formally identical to the process given by (5.4.1.7)
if g, is defined by

A
" DRI

The remainder of the theorem follows from (5.4.1.8) as soon as we establish
that

inf y, > 0, inf g, > 0.
k k
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According to assumptions (b) and (c), Df(x)™! is continuous on the
compact set K. Therefore cond(Df (x)) is continuous, and

1
7 max cond(Df (x)) >0
xe K
exists.

Without loss of generality, we may assume that x, is not a stationary
point of h; which means that it is no zero of f, because of (5.4.2.3) and
assumption (c). [If f(x,) = O, then it follows immediately that x; = x, . =
Xg4+2 = -, and there is nothing left to show.] Thus, since x, € K fork =0, 1,

ey

inf y, = y>0.
k

On the other hand, from the fact that f(x,) # 0, from (5.4.2.2), and from
the inequalities

-1 1
”dk " = ”Df(xk) f(xk)” = IIDf(’Ck)“ "f(xk)”’
DG < 2| Df (x| S (<),

it follows immediately that

1
Ok Z i v320>0
“72IDf ()
[from the continuity of Df(x) in the set K, which is compact]. Thus, all the
results of Theorem (5.4.1.8) [or (5.4.1.4)] apply to the sequence {x,}. Since
assumption (c) and (5.4.2.3) together imply that each stationary point of h is
also a zero of f, the proof is complete. O

The method (5.4.2.4) requires that | Dh(x,)||-and 7, = 1/cond(Df (x,)) be
computed at each iteration step. The proof of (5.4.1.8), however, shows that
it would be sufficient to replace all y, by a lower bound y >0, y, = 7. In
accord with this, 4, is usually determined in practice so that

m(27) < h(0)

However, since this only requires that , > 0, the methods used for the above
proofs are not sufficiently strong to guarantee the convergence of this
variant.

A further remark about the behavior of (5.4.2.4): In a sufficiently small
neighborhood of a zero the method chooses 4, = 1 automatically. This
means that the method conforms to the ordinary Newton method and con-
verges quadratically. We can see this as follows:

Since lim,_,,, x, = X and f(X) = 0, there is a neighborhood V,(X) of X in
which every iteration step z, — z;,, which would be carried out by the
ordinary Newton method would satisfy the condition

(5426) ”Zk+l - i]l S a"zk - .f”z
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and
(54.2.7) 32a%c?||z, — x|* <1,  c¢=cond(Df (X))
Taylor’s expansion of f about x gives

f(x) = Df (X)(x — x) + o[|x — )

Since lim,; o(|x — x|)/||x — X|| = 0, there is another neighborhood V;(x)
of X such that

DA x ~ %] < f(x) = V/hx) 2| DF D) |x — ]
for all x € V,(X).
Choose a neighborhood
U®) < W) A ()
and let kg be such that
x, € U(X)
for k > k. This is possible because lim, ., x, = X. Considering
Xir 1 7= X — D ()™ (%), ie, A4 =1
in (5.4.2.4), and using (5.4.2.6), (5.4.2.7), we are led to
M5 1) < DS a1 — SI° < 163 |x, — <|Zh(xe) < h(x)(1 — $).
From (5.4.2.4ba),

elldi |l DRG] < 23| D ()™M IDF (i) = 2h(xi).
This implies

B ) < RCs)(1 = 3) < hlxe) = 2F [ DRG]

That is, there exists a kg such that for all k > kg the choice j =0 and 4, =1
will be made in the process given by (5.4.2.4). Thus (5.4.2.4) is identical to the
ordinary Newton method in a sufficiently small neighborhood of X, which
means that it is locally quadratically convergent.

Assumption (a)-(c) in Theorem (5.4.2.5) characterize the class of func-
tions for which the algorithm (5.4.2.4) is applicable. In one of the assigned
problems for this chapter, two examples will be given of function classes
which do not satisfy (a)-(c).

5.4.3 Suggestions for a Practical Implementation of the
Modified Newton Method. A Rank-One Method Due to
Broyden

Newton’s method for solving the system f(x) = 0, where f: R" — R", is quite
expensive even in its modified form (5.4.2.4), since the Jacobian Df (x,) and
the solution to the linear system Df (x;)d = f(x,) must be computed at each
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iteration. The evaluation of explicit formulas for the components of Df (x) is
frequently complicated and costly; indeed, explicit formulas may not even be
available. In such cases it is reasonable to replace

_ (%) of (x)
o= (% %)
at each x = x;, by a matrix
(54.3.1) Af(x)= (A1 fo--- AL S)
where
A,-f(x)==-f(XI’r e X by, x}:') —f(x L X XT)

- f(x + hie) —f(x)
W ,

that is, we may replace the partial derivatives df/0x' by suitable difference
quotients A; £ Note that the matrix Af(x) can be computed with only n
additional evaluations of the function f (beyond that required at the point
x = Xx;). However it can be difficult to choose the stepsizes h;. If any h; is too
large, then Af(x) can be a bad approximation to Df (x), so that the iteration

(5-4.32) Xer1 = Xk — A A (%) 7Y (k)

converges, if it converges at all, much more slowly than (5.4.2.4). On the
other hand, if any h; is too small, then f(x + h;e;) = f(x), and cancellations
can occur which materially reduce the accuracy of the difference quotients.
The following compromise seems to work the best: if we assume that all
components of f(x) can be computed with a relative error of the same order
of magnitude as the machine precision eps, then choose h; so that f(x) and
f(x + h;e;) have roughly the first /2 digits in common, given that ¢-digit
accuracy is being maintained inside the computer. That is,

|hi 1A £ = /eps || £(x)].

In this case the influence of cancellations is usually not too bad.

If the function f is very complicated, however, even the n additional
evaluations of f needed to produce Af(x) can be too expensive to bear at
each iteration. In this case we try replacing Df (x,) by some matrix B, which
is even simpler than Af(x,). Suitable matrices can be obtained using the
following result due to Broyden (1965).

(5.4.3.3) Theorem. Let A and B be arbitrary n x nmatrices; let b € R", and let
F: R" - R" be the affine mapping F(u)= Au + b. Suppose x, x' € R" are dist-
inct vectors, and define p, q by

p=x—x, q=F(X)—F(x)= Ap.
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Then the n x n matrix B’ given by
B=B+ p—lr—p(q — Bp)p”
satisfies
lub,(B' — A) < lub,(B — A)
with respect to the Euclidian norm, and it also satisfies the equation
B'p=Ap=gq.

ProoF. The equality (B — A)p = 0 is immediate from the definition of B'.

Each vector u € R" satisfying ||u|, = 1 has an orthogonal decomposition of
the form

u=ap+v, vp=0, |1, aeR
Thus it follows from the definition of B’ that, for ||ul|, = 1,

(B — A, = [|(B' — Al = [[(B— A].
< lub,(B — A)|v|l, < luby(B — A).
Hence

Huliz=1

This result shows that the Jacobian DF(x) = A of an affine function F is
approximated by B’ at least as well as it is approximated by B, and further-
more B’ and DF(x) will both map p into the same vector. Since a differen-
tiable nonlinear function f: R" — R" can be approximated to first order in
the neighborhood of one of its zeros X by an affine function, this suggests
using the above construction of B from Beven in the nonlinear case. Doing so
yields an iteration of the form

d, =By 'f (%),
(5.4.3.4) xk+1 = Xk - A”( d’(’

P = Xge1 — Xk q = f (Xk+1) — f(x),

1
By =B, + ‘I')kr—pk (9 — B.p)pi-
The formula for B, ., was suggested by Broyden. Since rank(B,,; — By)
<1, it is called Broyden’s rank-one update. The stepsizes A, may be
determined from an approximate minimization of || f(x)|/*:

1 G )2 = min £~ 2dy)

Az0

2
’
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using, for example, a finite search process
(5435) A=279,  j=min{i= 0| | f(x, —27'd)| < | f(a)l}

as in (5.4.2.4).

A suitable starting matrix B, can be obtained using difference quotients:
B, = Af(x,). It does not make- good sense, however, to compute all follow-
ing matrices By, k > 1, from the updating formula. Various suggestions have
been made about which iterations of (5.4.3.4) are to be modified by replacing
B, + (1/pIp)(@ — B pi)pi with Af (x,) (“ reinitialization ). As one possibi-
lity we may obtain B, ., from B, using Broyden’s update only on those
iterations where the step produced by (5.4.3.5) lies in the interval
271 < 1 < 1. A justification for this is given by observing that the bisection
method (5.4.3.5) automatically picks 4, = 1 when || f(x, — di)|| < [ £ (x)]-
The following result due to Broyden, Dennis, and Moré (1973) shows that
this will be true for all x, sufficiently close to x (in which case making an
affine approximation to f is presumably justified):

Under the assumption that

(a) Df(x)exists and is continuous in a neighborhood U(x) of a zero point X,
(b) |Df(x) — Df(x)|l < Afx — x| for some A >0 and all x € U(x),
(c) [Df(X)]" ! exists,

then the iteration (5.4.3.4) is well defined using 4, = 1for all k > O(i.e,, all B,
are nonsingular) provided x, and B, are “sufficiently close” to x and Df (x).
Moreover, the iteration generates a sequence {x,} which converges super-
linearly to X,

]’ ‘*||Xk+' ,L;i” = 07
k= "xk - ’(”

if x, # x for all k = 0.

The direction d, = B; 'f(x,) appearing in (5.4.3.4) is best obtained by
solving the linear system B,d = f(x,) using a decomposition F; B, = R, of
the kind given in (4.9.1). Observe that the factors F, . ;, R, ; of B, can be
found from the factors F,, R, of B, by employing the techniques of Section
4.9, since modification of B, by a rank-one matrix is involved.

We remark that all of the foregoing also has application to function
minimization as well as the location of zeros. Let h: R" - R be a given
function. The minimum points of h are among the zeros of f(x) = Vh(x).
Moreover, the Jacobian Df (x) is the Hessian matrix V*h(x) of h; hence it can
be expected to be positive definite near a strong local minimum point x of h.
This suggests that the matrix B, which is taken to approximate VZh(x,)
should be positive definite. Consequently, for function minimization, the
Broyden rank-one updating formula used in (5.4.3.4) should be replaced by
an updating formula which guarantees the positive definiteness of B, .,
given that B, is positive definite. A number of such formulas have been
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suggested. The most successful are of rank two and can be expressed as two
stage updates:

— T

By s 12 7= By + o iy |
— T

Biyy =Byyy2— ﬁvkvk’

where B, ./, is guaranteed to be positive definite as well as By, ;. For such
updates the Choleski decomposition is the most reasonable to use in solving
the system B, d = f(x,). More details on these topics may be found in the
reference by Gill, Golub, Murray, and Saunders (1974). Rank-two updates
to positive definite approximations H, of the inverse [V2h(x,)]~! of the
Hessian are described in Section 5.11.

(@ 8>0),

5.5 Roots of Polynomials. Application of
Newton’s Method

Sections 5.5-5.8 deal with roots of polynomials and some typical methods
for their determination. There are a host of methods available for this pur-
pose which we will not be covering. See, for example, Bauer (1956), Jenkins
and Traub (1970), Nickel (1966), and Henrici (1974), to mention just a few.

The importance of general methods for determining roots of general
polynomials may sometimes be overrated. Polynomials found in practice are
frequently given in some special form, such as characteristic polynomials of
matrices. In the latter case, the roots are eigenvalues of matrices, and
methods to be described in Chapter 6 are to be preferred.

We proceed to describe how the Newton method applies to finding the
roots of a given polynomial p(x). In order to evaluate the iteration function
of Newton’s method,

p(x
Xy = x, — PO

P'ix)’

we have to calculate the value of the polynomial p, as well as the value of its
first derivative, at the point x = x, . Assume the polynomial p is given in the
form

p(x)=apx"+ ayx"" ' + - +a,.
Then p(x,) and p’(x;) can be calculated as follows: For x = £,
P(&)= (" (@0 + a))¢ + @ )¢ + )X + a,.
The multipliers of ¢ in this expression are recursively of the form
(5.5.1) by =aq
bi=b,_,¢&+ay, i=12..,n
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The value of the polynomial p at £ is then given by
p()=b,.

The algorithm for evaluating polynomials using the recursion (5.5.1) is
known as Horner’s scheme. The quantities b;, thus obtained, are also the
coefficients of the polynomial

pl(x)‘=b0x"_1 + blx"_z + -+ bn~1
which results if the polynomial p(x) is divided by x — &:
(552) p(x) = (x — &)ps(x) + by,

This is readily verified by comparing the coefficients of the powers of x on
both sides of (5.5.2). Furthermore, differentiating the relation (5.5.2) with
respect to x and setting x = & yields

P'(&) = pi(8).

Therefore, the first derivative p’(¢) can be determined by repeating the
Horner scheme, using the results b; of the first as coefficients for the second:

PE)=C(" (ol + b))+ K +b, s

Frequently, however, the polynomial p(x) is given in some form other
than

Px)= 40X+ + .

Particularly important is the case in which p(x) is the characteristic polyno-
mial of a symmetric tridiagonal matrix

a B 0]
ﬂZ . .
J = . . . ’ al', Bi real.
. . ﬁ"
L 0 ﬁn an_

Denoting by p;(x) the characteristic polynomial

(o, —x B 0
B, .
pix) = det '

. . ﬂi
0 B o—x
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of the principal minor formed by the first i rows and columns of the matrix J,
we have the recursions

Po(x)=1,

pilx)=(oy — x) - 1,

pi(x) = (2 = X)p;— 1(x) = BEpi_2(x), i=23..,n
p(x):=det(J — xI)= p,(x).

(5.5.3)

These can be used to calculate p(¢) for any x = ¢ and any given matrix
elements o;, B;. A similar recursion for calculating p’(x) is obtained by differ-
entiating (5.5.3):

Po(x) =0,

(5.5.4) Pix)= 1, .
pi(x)= —p;_1(x) + (& — x)pi_ 1 (x) — BZPi-2(x), i=23..,n
p'(x)=p(x),

The two recursions (5.5.3) and (5.5.4) can be evaluated concurrently.

During our general discussion of the Newton method in Section 5.3 it
became clear that the convergence of a sequence x, towards a zero £ of a
function is assured only if the starting point x, is sufficiently close to . A
bad initial choice x, may cause the sequence x, to diverge even for polyno-
mials. If the real polynomial p(x) has no real roots [e.g., p(x) = x* + 1], then
the Newton method must diverge for any initial value x, € R. There are no
known fail-safe rules for selecting initial values in the case of arbitrary
polynomials. However, such a rule exists in an important special case,
namely, if all roots §;,i=1, 2, ..., n, are real:

G262 28,
In Section 5.6, Theorem (5.6.5), we will show that the polynomials defined by
(5.5.3) have this property if the matrix elements «;, §; are real.
(55.5) Theorem. Let p(x) be a polynomial of degree n>2 with real
coefficients. If all roots &;,

&1 286224,
of p(x) are real, then Newton’s method yields a convergent strictly decreasing
sequence x, for any initial value xy, > &,.
Proor. Without loss of generality, we may assume that p(x,) > 0.
Since p(x) does not change sign for x > &,, we have
p(x)=apx"+ - +a,>0
for x > ¢, and therefore a, > 0. The derivative p’ has n — 1 real zeros «; with

iz 28 za 220,02,
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by Rolle’s theorem. Since p’ is of degree n — 1 = 1. these are all its roots, and
p'(x) > 0 for x > a; because a, > 0. Applying Rolle’s theorem again, and
recalling that n > 2, we obtain

p'(x)>0 for x> ay,
(5.5.6) ,( ) '
p'(x)=0 for x > ay.

Thus p and p’ are convex functions for x > «,
Now x, > &, implies that
X
_ P,( x) <X,
p'(xi)
since p'(x;) > 0, p(x;) > 0. It remains to be shown, that we do not “ over-

shoot,” i.e., that x, , ; > ¢;. From (5.5.6), x, > &, > «,, and Taylor’s theorem
we conclude that

0=p(E1)=plx) + (&1 — xp(x) + 3 — x)*p"(),  &i<d<x
> p(x) + (€1 — x)p' (%)
p(x) = p'(x;)(xx — x4 1) holds by the definition of x,, ;. Thus

Xe+1 = Xg

0> p'(x)(xi — Xks 1 + &1 — X)) = p'(a)&y — Xk 1)
and x, ., > ¢, follows, since p'(x,) > 0. O

For later use we note the following consequence of (5.5.6):

(5.5.7) Lemma. Let p(x)=agx" + - + a,, ao > 0, be a real polynomial of
degree n = 2 all roots of which are real. If o, is the largest root of p’, then
p"(x) =0 for x > ay, i.e, p’ is a convex function for x = a,.

We are still faced with the problem of finding a number x, > ¢,, without
knowing ¢; beforehand. The following inequalities are available for this
purpose:

(5.5.8) Theorem. For all roots & of an  arbitrary polynomial
p(x)=apx"+a; x" '+ - +a,,

|§i|<max:%,l+ a—:—l,...,l+ %:,
0 0 0
n .
|&] <max’1, 9 l,
l j=1 0[
a a,_ a
Ié.lsmax= L2 2 —‘},
n—1 a,-2 Ao
n—1
aj+1
&i| < ==,
I ll\j;) a;
— _ o
a a a a
|é.|<2maX{—’,\/—2,\/—3, \/—:
ap [21) Qo do
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Some of these inequalities will be proved in Section 6.9. Compare also
Householder (1970). Additional inequalities can be found in Marden (1949).
Quadratic convergence does not necessarily mean fast convergence. If the
initial value x, is far from a root, then the sequence x; obtained by Newton’s
method may converge very slowly in the beginning. Indeed, if x, is large,

then
« X:+ - 1 1
=X ————— x|l —--),
k+1 k nx;‘,—1+“. k n

so that there is little change between x; and x,, ;. This observation has led to
considering the following double-step method.:
plx)
Xp41 = Xg 2p'(xk)’ k=0,1,2,...,
in lieu of the straightforward Newton method.

Of course, there is now the danger of “ overshooting.” In particular, in the
case of polynomials with real roots only and an initial point x, > ¢,, some
Xy +1 may overshoot ¢,, negating the benefit of Theorem (5.5.5). However,
this overshooting can be detected, and, due to some remarkable properties
of polynomials, a good initial value y (&, > y > &,) with which to start a
subsequent Newton procedure for the calculation of ¢, can be recovered.
The latter is a consequence of the following theorem:

(5.5.9) Theorem. Let p(x) be a real polynomial of degree n > 2, all roots of
which are real, £y > &, = --- = &,. Let a, be the largest root of p'(x):

r=zay 2E,.

Pix)

Figure 8 Geometric interpretation of the double-step method.
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For n =2, we require also that £, > &, . Then for every z > £, the numbers

z z
(Figure 8) are well defined and satisfy
(5.5.10a) oy <Y,
(5.5.10b) &L <y<z.

It is readily verified that n =2 and &, = &, imply y = &, for any z > &,.

PRrOOF. Assume again that p(z) > 0 for z > &,. For such values z, we consider
the quantities Ay, A, (Figure 8), which are defined as follows:

Ay =p(Z) = p(z) = plz) = (z — 2)p'(2) = ‘ [p'(e) - P'(2)] at,

A=) = p) — & — ) = | (0 - PO de.

Ao and A, can be interpreted as areas over and under the graph of p’{x),
respectively (Figure 9).

|

P'(x) /;‘1 y
Figure 9 The quantities A, and A, interpreted as areas.

By Lemma (5.5.7), p’(x) is a convex function for x > a,. Therefore, and
because z' —y =z — 2z >0—the latter being positive by Theorem
(5.5.5)—we have

(5-5-11) Al < AO lf y = Ay,

with equality A, = A, holding if and only if p’ is a linear function, that is, if p
is a polynomial of degree 2. Now we distinguish the three cases y > &,,
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y=2¢1, y<é&,. For y> ¢, the proposition of the theorem follows im-
mediately from Theorem (5.5.5). For y = &,, weshow first that &, <oy < &,
that is, &, is asimple root of p. If y = &; = &, = a; were a multiple root, then
by hypothesis n > 3, and consequently A; < A, would hold in (5.5.11). This
would lead to the contradiction

Ay =p(2) = p(&y) — (2 = EP'(Ey) = p(2') < Ao = p(2).
Thus £; must be a simple root; hence a; < &, = y' = y < Z/, and the propo-
sition is seen to be correct in the second case, too.

The case y < ¢, remains. If a; < y, then the validity of the proposition
can be established as follows. Since p(z) > 0 and &, < o, < y < &,, we have
p(y) <0, p'(y) > 0. In particular, y' is well defined. Furthermore, since
p(y) = (y — ¥)p'(y) and A; < Ao, we have

Ao — Ay =p(y)+ (= yp'(y)=pP)z —y)=0.
Therefore 2’ > y’. By Taylor’s theorem, finally,
p(€)=0=py) + (& =P () + & —y)p"0),  y<do<y,
and since p”(x) = 0 for x > ay, p(y) = (y — ¥')p'(y), and p'(y) > O,
0= p(y) + (€ — VP () =P)E — V).

Therefore &, <y
To complete the proof, we proceed to show that

(5.5.12) y=y(z) > a,

for any z>¢,. Again we distinguish two cases, &; > a; > &, and
Si=0y=2¢;.
If & > oy > &,, then (5.5.12) holds whenever

Sy <z<é) + (& —ay)
This is because Theorem (5.5.5) implies z > z' > &,, and therefore
y=2-(@z-2)>¢ - (¢ —ay)=04

holds by the definition of y = y(z). Hence we can select a z, with y(z,) > ;.
Assume that there exists a z; > &, with y(z{) < a;. By the intermediate-value
theorem for continuous functions, there exists a z € [z,, z;] with
y = y(z) = ay. From (5.5.11) for z = Z,

Ay =p(Z') — ply) — (& =y’ (¥) = p(Z') — p(y) < Ao = p(Z),

and therefore p(y) = p(x;) = 0. On the other hand, p(«,) < 0, since &, is a

simple root, in our case, causing p(x) to change sign. This is a contradiction,
and (5.5.12) must hold for all z > £,.

If £, = ay = £,, then by hypothesis n > 3. Assume, without loss of gener-
ality, that

P =X +a x4 g,



5.5 Roots of Polynomials. Application of Newton’s Method 293

Then
al an
1 1 . _—
) p(2) z + z + +z"
’=z—- S =z—-
p() nl n lﬂ an—1
z nztt
1
—efieofl)
n z
Therefore

z

y=y(z)=z+2(z'—z)=z—%1f(1+o(1))

= z(l - %) + 0(1).

Since n > 3, the value of y(z) increases indefinitely as z — oo, and we con-
clude again that there exists a z, > &; with y, = y(z) > a,. If (5.5.12) did
not hold for all z > £, then we could conclude, just as before, that there
exists z > &, with y = y(z) = a,. However, the existence of such a value
y =0, = &; = £, has been shown to be impossible earlier in the proof of this
theorem. d

The practical significance of this theorem is as follows. If we have started
with x, > &,, then either the approximate values generated by the double-
step method

p(x)
2 P'(x)

Xk+1 = X —

satisfy
x()?xl?“.?xk?xk-!—l?“'?él and limxk=§1,

k~

or there exists a first x,, := y such that
p(xo)p(xi) >0 for 0 <k < ko, and p(xo)p(xy,) < O.
In the first case, all values p(x,) are of the same sign,
p(xo)p(x) =0 for all k,

and the x, converge monotonically (and faster than for the straightforward
Newton method) towards the root &,. In the second case,

Xo>X1 > >X 1>E>y=x,>0,>¢;.

Using y, *= y as the starting point of a subsequent straightforward Newton
procedure,
p(yi)

=y—",“—, k=0,1,...,
Ye+1 k P(Yk)
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will also provide monotonic convergence:
W2y z2éy, limy, = ¢;.
k=
Having found the largest root &, of a polynomial p, there are still the
other roots &,, &;, ..., &, to be found. The following idea suggests itself
immediately: “divide off ” the known root &, that is, form the polynomial

p(x)
x—¢&
of degree n — 1. This process is called deflation. The largest root of p,(x) is
¢, , and may be determined by the previously described procedures. Here &,
or, even better, the value y = x,, found by overshooting may serve as a
starting point. In this fashion, all roots will be found eventually.
Deflation, in general, is not without hazard, because roundoff will pre-
clude an exact determination of p,(x). The polynomial actually found in
place of p, will have roots different from &, , &5, ..., &, . These are then found
by means of further approximations, with the result that the last roots may
be quite inaccurate. However, deflation has been found to be numerically
stable if done with care. In dividing off a root, the coefficients of the deflated
polynomial

pi(x):=

pi(x)=apx" ' +ax"" 2+ +a,_,

may be computed in the order ay, a}, ..., d,_; (forward deflation) or in the
reverse order (backward deflation). The former is numerically stable if the
root of smallest absolute value is divided off; the latter is numerically stable
if the root of largest absolute value is divided off. A mixed process of deter-
mining the coefficients will be stable for roots of intermediate absolute value.
See Peters and Wilkinson (1971) for details.

Deflation can be avoided altogether as suggested by Maehly (1954). He
expresses the derivative of the deflated polynomial p,(x) as follows:

pP(x)  plx)
x—¢& (x"éx)z’

and substitutes this expression into the Newton iteration function for p,:

pilx) =

= xi — pa(xy) _ _ p(xx)

- k -_ ’ -_— .

. “pix) ¢ (%) - _P(i;i)_
o X — ¢y

In general, we find for the polynomials

)= p(x)
Pi) (x—=¢&,). (x=¢)
that
v p'(x) p(x) . J 1
Pix) (x=¢1) .. (x=¢&) (x=¢&)...(x=¢) i; x—¢
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The Maehly version of the (straightforward) Newton method for finding the
root &;,, is therefore as follows:

(55.13)  xppy = Dy(x,) with ®,(x)=x — ”(f) PR
p'(x) - -;1 xp_xé,

The advantage of this formula lies in the fact that the iteration given by ®;
converges quadratically to ¢;, , even if the numbers &4, ..., £; in ®@; are not
roots of p (the convergence is only local in this case). Thus the calculation of
¢;+1 is not sensitive to the errors incurred in calculating the previous roots.
This technique is an example of zero suppression as opposed to deflation
[Peters and Wilkinson (1971)).

Note that ®;(x) is not defined if x = &,k =1, ..., j, is a previous root of
p(x). Such roots cannot be selected as starting values. Instead one may use
the values found by overshooting if the double-step method is employed.

The following pseudo-ALGOL program for finding all roots of a polynomial
p having only real roots incorporates these features. Function procedures
p(z) and p'(z) for the polynomial and its derivative are presumed available.

zo *= starting point X;
for j:=1 step 1 until n do
begin m:=2; zs = zo;
Iteration: z = zs; s:=0;
for i:=1 step 1 until j — 1 do
s=s+ 1/(z — xi[i]);
zs:=p(z); zs'=2z — m x zs/(p’(z) — zs x s);
if zs < z then goto Iteration;
if m = 2 then
begin zs :=z; m:=1; goto Iteration end;
§j=z
end;

ExampLE. The following example illustrates the advantages of Méehly‘s method. The
coefficients g; of the polynomial

)= 1 =279 = Faxte~

are calculated in general with a relative error of magnitude . Considerations in
Section 5.8 will show the roots of p(x) to be well conditioned. The following table
shows that the Newton-Maehly method yields the roots of the above polynomial up
to an absolute error of 40¢ (¢ = 10~ !? = machine precision). If forward deflation is
employed but the roots are divided off as shown, ie. in order of decreasing
magnitude, then the fifth root is already completely wrong. The absolute errors
below are understood as multiples of e.
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(Absolute error) x 102

Ej=274 Newton-Maehly Deflation
1.0 0 0

0.5 6.8 3.7 x 10?
0.25 1.1 1.0 x 108
0.125 0.2 1.4 x 10°
0.062 5 4.5

0.031 25 40

0.015 625 33

0.007 812 5 39.8 > 1012
0.003 906 25 10.0

0.001 953 125 53

0.000 976 562 5 0

0.000 488 281 25 0

0.000 244 140 625 04

0.000 122 070 3125 0

The polynomial p;(x),

P = [x =27 =22

has the roots 277, j =1, 2, ..., 13. If p, is produced by numerically dividing p(x) by
x—1,

) =11 20

then we observe that the roots of p(x) are already quite different from those of p,(x):

Roots of p,(x) computed
by Newton-Maehly

-

0.499 999 996 335
0.250 001 00...
0.123 697...
0.0924...

—0.098 4...

—0.056...

—-064...

+1.83...

P00 NI AN AW -

However, if forward deflation is employed and if the roots are divided off in the
sequence of increasing absolute values, starting with the root of smallest absolute
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value, then this process will also yield the roots of p(x) up to small multiples of
machine precision [Wilkinson 1963, Peters and Wilkinson (1971)]:

Sequence of dividing off roots of p(x)

J 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(Absolute error)
x 1012

02 04 2 5 31 14 6 12 6 2 2 12 1

5.6 Sturm Sequences and Bisection Methods

Let p(x) be a polynomial of degree n,
p(x)=aox"+a;x" '+ +a,, ay#0.

It is possible [see Henrici (1974) for a thorough treatment of related results]
to determine the number of real roots of p(x) in a specified region by examin-
ing the number of sign changes w(a) for certain points x = a of a sequence
of polynomials py(x), i=0, 1, ..., m, of descending degrees. Such a sign
change happens whenever the sign of a polynomial value differs from that
of its successor. Furthermore, if p,(a) = 0, then this entry is to be removed
from the sequence of polynomial values before the sign changes are counted.
Suitable sequences of polynomials are the so-called Sturm sequences.

(5.6.1) Definition. The sequence

p(x) = po(x), p1(x), - Pml(X)
of real polynomials is a Sturm sequence for the polynomial p(x) if:

(@) All real roots of p,(x) are simple.

(b) sign p,(&) = —sign p,(&) if € is a real root of py(x).
() Fori=1,2,....,m—1,

Piv1(&)pi-1(8) <O

if £ is a real root of p,(x).
(d) The last polynomial p,(x) has no real roots.

For such Sturm sequences we have the following

(5.6.2) Theorem. The number of real roots of p(x)= po(x) in the interval

a < x < b equals w(b) — w(a), where w(x) is the number of sign changes of a
Sturm sequence

Po(x), -, Pm(x)
at location x.
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Before proving this theorem, we show briefly how a simple recursion
can be used to construct a Sturm sequence for the polynomial p(x), provided
all its real roots are simple. We define initially

Po(x) = p(x), p1(x)= =po(x) = —p'(x),

and form the remaining polynomials p; , ;(x) recursively, dividing p; _ {(x) by
pilx),
(563) pi-1(x) = @(x)pi(x) — cipira(x),  i=12,...,
where
[degree of p,(x)] > [degree of p;, (x)]
and the constants ¢; > 0 are positive but otherwise arbitrary. This recursion

is the well-known Euclidean algorithm. Because the degree of the polynomials
decreases, the algorithm must terminate after m < n steps:

Pm- l(x) = qm(x)pm(x)’ Pm(X) i 0.

The final polynomial p,(x) is a greatest common divisor of the two initial
polynomials p(x) and p,(x) = —p'(x). (This is the purpose of the Euclidean
algorithm.) If all real roots of p(x) are simple, then p(x) and p’(x) have no
real roots in common. Thus p,(x) has no real roots and satisfies (5.6.1d). If
pi(£) =0, then (5.6.3) gives p;,_ (&) = —¢; pi+1(¢). Assume that p;, (&) = 0.
Then (5.6.3) would imply p;, 1(¢) = -+ = p.(¢) = 0, contradicting p,,(¢) # O.
Thus (5.6.1c) is satisfied. The two remaining conditions of (5.6.1) are
immediate.

PrROOF OF THEOREM (5.6.2). We examine how a perturbation of the value a
affects the number of sign changes w(a) of the sequence

pO(a)’ pl(a)’ trts pm(a)'

So long as a is not a root of any of the polynomials p;(x),i =0, 1, ..., m, there
is, of course, no change. If a is a root of p;(x), we consider the two cases i > 0
and i =0.

In the first case, i < m by (5.6.1d) and p; . ,(a) # O, p;—,(a) # 0 by (5.6.1c).
If pi(x) changes sign at x = a, then for a sufficiently small perturbation
h >0, the signs of the polynomials p;a), j=i—1, i, i + 1, display the
behavior illustrated in one of the following four tables:

a-h a a+h a—h a a+h

i—1 - - — i—1 + + +
i — 0 + i - 0 +

i+1 + + + i+1 - — -
a—h a a+h a-—h a a+h

i—1 - - - i—1 + + +
i + 0 - i + 0 -

i+1 + + + i+1 - - -
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In each instance, w(a — h) = w(a) = w(a + h): the number of sign changes
remains the same. This is also true if p;(x) does not change sign at x = a.

In the second case, we conclude from (5.6.1b) that the following sign
patterns pertain:

iJ a—h a a+h i | a—h a a+h
0‘ - 0 + 0\ + 0 -
1 - ~ - 1 + + +

In each instance, w(a — h) = w(a) = w(a + h) — 1: exactly one sign change is
gained as we pass through a root of py(x) = p(x).
For a < b and sufficiently small h > 0,

w(b) — w(a) = w(b — h) — w(a — h)

indicates the number of roots of p(x) in the intervala — h < x < b — h. Since
h >0 can be chosen arbitrarily small, the above difference indicates the
number of roots also in the interval a < x < b. O

An important use of Sturm sequences is in bisection methods for determin-
ing the eigenvalues of real symmetric matrices which are tridiagonal:

[ «, B, 1

BZ . . 0

ﬂn Xy

Recall the characteristic polynomials p;(x) of the principal minor formed by
the first i rows and columns of the matrix J, which were mentioned before as
satisfying the recursion (5.5.3):

Po(x)=1,

pi(x)=a; — X,

pi(x) = (& — x)p;— 1(x) — Bipi—2(x), i=23..,n
The key observation is that the polynomials
(5-6.4) Pu(X), Pn—1(x), .-, Po(x)

are a Sturm sequence for the characteristic polynomial p,(x) = det(J — xI)
[note that the polynomials (5.6.4) are indexed differently than in (5.6.1)]
provided the off-diagonal elements §;,i = 2, ..., n, of the tridiagonal matrix
J are all nonzero. This is readily apparent from the following

(5.6.5) Theorem. Let o;, B; be real numbers and B; #0 for j=2, ..., n.
Suppose the polynomials pi(x), i = 0, ..., n, are defined by the recursion (5.5.3).
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Then all roots X, k=1, ...,i,0f p;,i=1, ..., n, are real and simple:
x> x> 0> X))
and the roots of p;_, and p;, respectively, separate each other strictly:
P> x> P> x> XD S XD,
ProoF. We proceed by induction with respect to i. The theorem is plainly

true for i = 1. Assume that it is true for some i > 1, that is, that the roots x{”
and x{'"V of p; and p,_,, respectively, satisfy

(5.6.6) xP> x> xP > x> > XD > X,
By (5.5.3), p, is of the form p,(x) = (— 1)*x* + ---. In particular, the degree of

px equals k. Thus p;_,(x) does not change its sign for x > x{~!), and since
the roots x{ ™V are all simple, (5.6.6) gives immediately

(56.7) sign pi_,(x{") = (—1y** fork=1,2,...,i
Also by (5.5.3),

Pirt(X) = —BIpio (), k=1,2,..., i
Since B2 > 0,

sign p;, (x?) = (= 1)+ 1, k=1,2,...,1
sign Pi+1(+°°)=(—1)i+l, sign p;4(—o0) =1

holds, and p;, ;(x) changes sign in each of the intervals [x{, o), (— o0, x{"],
[x{% 1, x{’], k=1, ..., n— 1. The roots x{'* " of p;,, are therefore real and
simple, and they separate the roots x{" of p;:

D > 1) > ) D > x> > X0 > XA, 0

The polynomials of the above theorem,

Pa(X)s Pa-1(x), - -5 Po(x),

indeed form a Sturm sequence: By (5.6.5), p,(x) has simple real roots
& >8> > &, and by (5.6.7)

sign p,- (&) = (=1,
sign p(&) = (— 1)t = —sign p, (&),

fork=1,2,...,n
For x = — oo the Sturm sequence (5.6.4) has the sign pattern

)

Thus w(—00) = 0. By Theorem (5.6.2), w(u) indicates the number of roots ¢
of p,(x) with & < p: w(u) = n + 1 — i holds if and only if {; < p.
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The bisection method for determining the ith root &; of p,(x) (¢, > &, >
-+ > & ) now is as follows. Start with an interval

[ao, bo]

which is known to contain &;; e.g., choose b, > &, ao < &,. Then divide this
interval with its midpoint and check by means of the Sturm sequence which
of the two subintervals contains &;. The subinterval which contains &; is
again divided, and so on. More precisely, we form for j =0, 1, 2, ...

= (a; + by)/2,
o ifw)=>n+1-4

BT i w) <n+1-i,
by ifwp)<n+ 1

Then
[aj+1, bjs 1] < a), by,
|aje1 = bjss| = |a;—by| /2,
¢i€lajer, bjal)
The quantities a; increase, and the quantities b; decrease, to the desired root
&;. The convergence process is linear with convergence rate 0.5. This method
for determining the roots of a real polynomial all roots of which are real is

relatively slow but very accurate. It has the additional advantage that each
root can be determined independently of the others.

5.7 Bairstow’s Method

If a real polynomial has any complex conjugate roots, they cannot be found
using the ordinary Newton’s method if it is carried out in real arithmetic and
begun at a real starting point: complex starting points and complex arith-
metic must be used. Bairstow’s method avoids complex arithmetic. The
method follows from the observation that the roots of a real quadratic
polynomial
x2—rx—gq
are roots of a given real polynomial
p(x)=a0x"+--~+a,,, aO#O,

if and only if p(x) can be divided by x* — rx — g without remainder. Now
generally

(57.1) plx) = py(x)(x? = rx — g) + Ax + B,
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where the degree of p, is n — 2, and the remainder has been expressed as
Ax + B. The coefficients of the remainder depend, of course, upon r and g,
that is

A= A(r,q) and B=B(r,q),
and the remainder vanishes when r, q satisfy the system
(5.7.2) Alr, 9) =0, B(r, q)=0.

Bairstow’s method is nothing more than Newton’s method (5.3) applied to
(5.7.2):

[o4 o4
r; r; o oq A(ri, q
5.7.3 1+1]=[1]_ q . I i 1]
( ) [qi+l q; a_B a__B B(rl s ql)
or 0q |=%
In order to carry out (5.7.3), we must first determine the partial derivatives
0A
4= 0A 4 =04 B = 0B B — OB

r ar’ q aq’ r E’ q—-aTq—'

Now (5.7.1) is an identity in r, g, and x. Hence, differentiating with respect to
rand g,

0 )

L pg=0=( - -9 g4 axsB,
(5.7.4)

—a—p(x)50=(x2 —q)—— pl() —pi(x)+ A4,x+ B,.

aq q 1 q q
After a further division of p,(x) by x> — rx — g we obtain the representation
(5.7.5) pi(x) = pa(x)(x®* —rx — q) + A;x + B,.

Assuming that x> — rx — g = 0 has two distinct roots x,, x,, it follows that
pi(x) = Ayx; + B,
for x = x;, i = 0, 1. Therefore the equations
—x,-(Alxi + Bl) + A,.‘C,- + Br = 0\
—(A,x; + By) + A,x; + B, = 0]

follow from (5.7.4).
From the second of these equations we have

(5.7.6) A,=A,, B,=B,

i=0,1,

since x, # x,, and therefore the first equation yields

—x}A,+ x(A,—B))+ B, =0, i=0,1
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Since x} = rx; + q it follows that
x4, —B,— A, r)+ B, — A, - q=0, i=0,1,
and therefore
A —B,— A, r=0,
B, — A, q=0,
since xo # X;.
Putting this together with (5.7.6) yields
A,= Ay B,=B,,
Ar=rAl+Bl’ Br=qu'
The values A4, B (or A4,, B,) can be found by means of a Horner-type
scheme. Using p(x)=aox"+ - +a,, py(x)=bex""?+ - +b,_, and

comparing coefficients, we find the following recursion for A, B, b; from
(5.7.2):

by =ay,

b, ==byr + ay,

b;==b;,_,q+b;_yr+a fori=273...,n-2
A=b,_3q+b,_yr+a,

B=b,_,q+ a,.

Similarly, (5.7.5) shows how the b; can be used to find 4, and B;.

5.8 The Sensitivity of Polynomial Roots

We will consider the condition of a root & of a given polynomial p(x). By this

we mean the influence on ¢ of a small perturbation of the coefficients of the
polynomial p(x):

Pe(x) = p(x) + eg(x),

where g(x) # 0 is an arbitrary polynomial.
Later on it will be shown [Theorem (6.9.8)] that if ¢ is a simple root of p,
then for sufficiently small absolute values of ¢ there exists an analytic func-

tion ¢(e), with ¢(0) = &, such that ¢(e) is a (simple) root of the perturbed
polynomial p,(x):

p(S(e)) + eg(S(e)) = 0.
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From this, by differentiation with respect to ¢,
kp'(£(0)) + g(£(0)) =0,

_ —g()
k= p'(&)”’

where

dé(e)

ko= :
de £=0

Thus, to a first order of approximation (i.e., disregarding terms in powers of
¢ greater than 1), based on the Taylor expansion of £(¢), we have

g(¢)
5.8.1 E(e) =& — e,
(5.8.1) (€) 7(0)
In the case of a multiple root £, of order m, it can be shown that p(x) +
eg(x) has a root of the form

He)= € + hiem),

where h(t) is, for small |¢], an analytic function with h(0) = 0. Differentiat-
ing m times with respect to t and noting that p(¢)=p'(&)=--=
p™ (&) = 0, p™(&) # 0, we obtain from

0= p.((e)) = p(E + h(t)) + t"g( + h(t)), " =¢,
the relations

pPME™ + mlg(E) =0,

Lo K_m_!g(él tn
p(m)(i) ’
where
._dh(r)
k: I Y

Again to a first order of approximation,

(5.8.2) E(e) = & + glim

m! g(é)] tm
p(m)(é) .

For m = 1 this formula reduces to (5.8.1) for single roots.
Let us assume that the polynomial p(x) is given in the usual form

p(X)= aox" + o+ a,,
by its coefficients a;. For

n—i

gi(x)=a;x
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the polynomial p,(x) is the one which results if the coefficient a; of p(x) is
replaced by a;(1 + ¢). The formula (5.8.2) then yields the following estimate
of the effect on the root ¢ of a relative error ¢ of g;:

m!al_érwi i/m
- P(m)(f)

It thus becomes apparent that in the case of multiple roots the changes in
root values &(¢) — & are proportional to '™, m > 1, whereas in the case of
single roots they are proportional to just ¢: multiple roots are always badly
conditioned. But single roots may be badly conditioned too. This happens if
the factor of ¢ in (5.8.3),

(583) Ee) — & = glim

p )
is large compared to &, which may be the case for seemingly “harmless ”
polynomials.

k(i, €)=

k

ExampLE [Wilkinson (1959)].
(1) The roots &, =k, k=1, 2, ..., 20, of the polynomial

plx)=(x—-1)(x—-2)... (x —20) = .2‘20 a;x?°7"

are well separated. For &,, =20, we find p'(20) = 19!, and replacing the
coefficient a; = —(1 +2 + -~ + 20) = —210 by a,(1 + &) causes an estimated
change of

10 19
Erole) = Er0 =6 202207 <109 x 101,
19!
The most drastic changes are caused in &4 by perturbations of as. Since
&6 =16 and a5 = —10'°,

15

——4|615, xe-37 % 104

E16(8) — &6 = —eas

This means that the roots of the polynomial p are so badly conditioned that even
computing with 14-digit arithmetic will not guarantee any correct digit ¢,.
(2) By contrast, the roots of the polynomial

20 . 20 i .
pe)= Ya =[] (c=27),  &=27)
i=0 j=1

while not well separated and * accumulating” at zero, are all well conditioned.

For instance, changing a,, to a,¢(1 + ¢) causes a variation of ¢, which to a first

order of approximation can be bounded as follows:
&20(e) = &20 | 1

o PRI e Ion L@ <4k
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More generally, it can be shown for all roots ¢; and changes a; — a;(1 + ¢) that

Sile) =&
&

£ 64¢|.

However, the roots are well conditioned only with respect to small relative
changes of the coefficients a;, and not for small absolute changes. If we replace
az0 = 2"21% by @30 = az0 + Aaze, Aaze=27*3(x 107 '*)—this can be con-
sidered a small absolute change—then the modified polynomial has roots &
with

By Bao= a0 = 27210 4278 = (2162 1 1)(¢, ... 20).

In  other words, there exists at least one subscript r with
|E,/¢,| = (2162 + 1)120 > 28 = 256.

It should be emphasized that the formula (5.8.3) refers only to the sensiti-
vity of the roots of a polynomial

p(x)= é“oa,-x""'

in its usual representation by coefficients. There are other ways of represent-
ing polynomials—for instance, as the characteristic polynomials of tridia-
gonal matrices by the elements of these matrices [see (5.5.3)]. The effect on
the roots of a change in the parameters of such an alternative representation
may differ by an order of magnitude from that described by the formula
(5.8.3). The condition of roots is defined always with a particular type of
representation in mind.

ExampLE. In Theorem (6.9.7) it will be shown that, for each real tridiagonal matrix

2 B
B: -

BZO

Bao 220

whose characteristic polynomial is p(x) = (x — 1)(x — 2) ... {(x — 20), small relative
changes in %; and B; cause only small relative changes of the roots ¢; = j. With respect
to this representation, all roots are well conditioned, although they are very badly
conditioned with respect to the usual representation by coefficients, as was shown in
the previous example. For detailed discussions of this topic see Peters and Wilkinson
(1969) and Wilkinson (1965).

5.9 Interpolation Methods for Determining Roots

The interpolation methods to be discussed in this section are very useful for
determining zeros of arbitrary real functions f(x). Compared to Newton’s
method, they have the advantage that the derivatives of f need not be
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computed. Moreover, in a sense yet to be made precise, they converge even
faster than Newton’s method.

The simplest among these methods is known as the method of false posi-
tion or regula falsi. It is similar to the bisection method in that two numbers
x; and q; with

(59.1) f(x)f(a) <0

are determined at each step. The interval [x;, a;] contains therefore at least
one zero of f, and the values x; are determined so that they converge towards
one of these zeros. In order to define x;,,, a;+1, let y; be the zero of the
interpolating linear function

p(x)=1(x;) + (x — x;) ﬂ—"—-’z) :ﬁ.(a") ,
where p(x;) = f(x:), p(a;) = f(a;), that is,
(592)  m=x—flx) G _aSl) = x/la)

fl)=fl@)  fx)—flas)

Since f(x;)f(a;) < 0 implies f(x;) — f(a;) # O, y; is always well defined and
satisfies either x; < y; < a; or a; < y; < x;. Unless f(y;) = 0, put

::i = 5} if £ () £ (x:) > 0,
(59.3) =
12 -

If f (1;) = O, then the method terminates with y; the zero. An improvement
on (5.9.3) is due to Dekker and is described in Peters and Wilkinson (1969).

In order to discuss the convergence behavior of the regula falsi, we
assume for simplicity that /" exists and that for some i

(59.4a) ‘ x; <a,

(5.9.4b) f(x)<0,  fla)>0,

(5.9.4c) f"(x)=0 forall xe|[x;,a]

Under these assumptions, either f(y;) = 0 or
fui)f(xi) >0,

and consequently
Ni < Xjpg = W< 8y = 0.
To see this, note that (5.9.4) and the definition of y; imply immediately that

The remainder formula (2.1.4.1) for polynomial interpolation yields, for
x € [x;, ;] and a suitable value ¢ € [x;, a;), the representation

f(x) = px) = (x = x)(x — @) f"(£)/2.
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By (5.9.4¢), f(x) — p(x) < 0 in the interval x € [x;, a;]. Thus f(g;) < O since
p(u;) = 0, which was to be shown.

It is now easy to see that (5.9.4) holds for all i > i, provided it holds for
some iy. Therefore a; = a for i > iy, the x; form a monotone increasing
sequence bounded by a, and lim, ., x; = £ exists. Since f is continuous, and
because of (5.9.4) and (5.9.2),

f(E)<0,  fla)>0,
af (§) — ¢f(a)
& ~rfla)
Thus (¢ — a)f (&)= 0. But ¢ # a, since f(a) > 0 and f(¢) <0, and we con-
clude f (&) = 0. The values x; converge to a zero of the function f.

Under the assumptions (5.9.4) the regula falsi method can be formulated
with the help of an iteration function:

¢ =

— Ol )= Y x) = xf(a)
(5.9.5) =) 0=

Since /() = 0,
()= M(a) +¢f(a)f'(€) 1 -

a
o e = (& L
/(@) TO7E -1
By the mean-value theorem, there exist 1,, 1, such that
L@ c<nm<a
(5.9.6) i
L(%)__:C{(C) =f'(n2) X; <y <

Because f”(x) > 0 holds for x € [x;, a], f'(x) increases monotonically in this
interval. Thus (5.9.6), x; < ¢, and f(x;) < 0 imply immediately that

0 < f'(n2) < f(E) < fm)

and therefore
0<P(@) <1

In other words, the regula falsi method converges linearly under the assump-
tions (5.9.4).

The previous discussion shows that, under the assumption (5.9.4),
regula falsi will eventually utilize only the first two of the recursions (5.9.3).
We will now describe an important variant of regula falsi, called the secant
method, which is based exclusively on the second pair of recursions (5.9.3):

o _‘&1&.) —‘ﬁ_f(xirl)
(5.9.7) Xip1 = 1) =)

i=01,....
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In this case, the linear function always interpolates the two latest points of
the interpolation. While the original method (5.9.3) is numerically stable
because it enforces (5.9.1), this may not be the case for the secant method.
Whenever f(x;) = f(x;_,), digits are lost due to cancellation. Moreover, x;, ,
need not lie in the interval [x;, x;,_,], and it is only in a sufficiently small
neighborhood of the zero ¢ that the secant method is guaranteed to
converge. We will examine the convergence behavior of the secant method
(5.9.7) in such a neighborhood and show that the method has a superlinear
order of convergence. To this end, we subtract ¢ from both sides of (5.9.7),
and obtain, using divided differences (2.1.3.5),

Xipp—¢=(x—&) - flx )‘( »7\,'( _1
69%) == =gy
= (X,- - é)(-\’i— 1— ¢ LIE\IEI\'_::,\,'\:,]C?] .

If fis twice differentiable, then (2.1.4.3) gives
STxi- v xi] =1"(my), ny € Ifx;_y, x;],
Sxiov xi & =5"(n2), n2 € I[xi-y, x;, &)
For a simple zero ¢ of f, f'(£) # 0, and there exist a bound M and an

interval J = {x||x — &| < ¢} such that

(59.10) ‘ % ,{_( (%)

Let ¢;:=M|x;—¢| and e,, e, < min{l, eM}. Then, using (5.9.8) and
(5.9.10), it can be easily shown by induction that

(599)

<M foranyn,n,el.

(59.11) ey <ee_, fori=1,2 ...
and |e;| < min{1, eM}. But note that
(59.12) e, <K% fori=012,...,

where g=(1+ \/_ )2=1618... is the positive root of the equation
W—-pup—-1=0, and K= =max{e,, ¢/ ¢, } < 1. The proof is inductive: This
choice of K makes (5.9.12) valid for i = 0 and i = 1. If (5.9.12) holds fori — 1
and i, then (5.9.11) yields

1 +1
e+ S KK =K?",

since g2 = g + 1. Thus (5.9.12) holds also for i + 1, and must therefore hold
in general.

According to (5.9.12), the secant method converges at least as well as a
method of order g = 1.618.... Since one step of the secant method requires
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only one additional function evaluation, two secant steps are at most as
expensive as a single Newton step. Since K%'’ = (K%)"* = (K¥¥*!, two
secant steps lead to a method of order ¢> = g + 1 = 2.618..... With compar-
able effort, the secant method converges locally faster than the Newton
method, which is of order 2.

The secant method suggests the following generalization. Suppose there
are r + 1 different approximations x;, x;_, ..., X;_, to a zero ¢ of f(x).
Determine the interpolating polynomial Q(x) of degree r with

Oxi—)=f(xi—;), Jj=01,..,r

and choose the root of Q(x) closest to x; as the new approximation x,, . For
r = 1 this is the secant method. For r = 2 we obtain the method of Muller.
The methods for r > 3 are rarely considered, because there are no practical
formulas for the roots of the interpolating polynomial.

Muller’s method has gained a reputation as an efficient and fairly reliable
method for finding a zero of a function defined on the complex plane and, in
particular, for finding a simple or multiple root of a polynomial. It will find
real as well as complex roots. The approximating values x; may be complex
even if the coefficients and the roots of the polynomial as well as the starting
values x,, x,, x5 are all real. Our exposition employs divided differences (see
Section 2.1.3), following Traub (1964).

By Newton’s interpolation formula (2.1.3.8), the quadratic polynomial
which interpolates a function f (in our case the given polynomial p) at x;_,,
X;-1, X; can be written as

Q) = 1161 + FLxi— 1 XX = ) + D%ic s im0 (X = X, 1)(x = )
or
Qi(x) = a;(x — x;)* + 2b(x — x;) + ¢,
where
a;=fxi—z, xi- 1, X},
b= T 1 3+ T2 e X = xim )
¢ =f[x;]-

If h; is the root of smallest absolute value of the quadratic equation
a; h? + 2b;h + ¢; =0, then x;,, = X; + h; is the root of Q;(x) closest to x;.

In order to express the smaller root of a quadratic equation in a numer-
ically stable fashion, the reciprocal of the standard solution formula for
quadratic equations should be used. Then Muller’s iteration takes the form

C:
5.9.13 TP S R
( ) i+1 i b,v i’ /"—blz - _a_,-ci
where the sign of the square root is chosen so as to maximize the absolute
value of the denominator. If a; = 0, then a linear interpolation step as in the



5.9 Interpolation Methods for Determining Roots 311

secant method results. If a; = b; = 0, then f(x;_,) = f(x;-,) = f(x;), and the
iteration has to be restarted with different initial values. In solving
the quadratic equation, complex arithmetic has to be used, even if
the coefficients of the polynomial are all real, since b} — a;c; may be
negative.

Once a new approximate value x;,, has been found, the function f is
evaluated at x;,, to find

il =f(xis1),
—L[YL 1] — fIx]

Xig1 — X

[xi, xiv ) = fIxiz 0o LJ

Xiv1 = Xi-1

)

flxis xi:

f[xi—l’ X;, XH_I] ==f

These quantities determine the next quadratic interpolating polynomial
Qi v 1(x).
It can be shown that the errors ¢; = (x; — &) of Muller’s method in the
proximity of a single zero ¢ of f(x) = 0 satisfy
f(s)(é)

vy = 8.'8.‘—18:'—2( - W + 0(8)),

e=max(|& |, Ja-1 ] |e-2])

(5.9.14)

[compare (5.9.8)]. By an argument analogous to the one used for the secant
method, it can be shown that Muller’s method is at least of order
g = 1.84 ... where q s the largest root of the equation y> — p> — y — 1 =0.

The secant method can be generalized in a different direction. Consider
again r + 1 approximations x;, X;_,, ..., X;_, to the zero ¢ of the function
f(x). If the inverse g of the function f exists in a neighborhood of ¢,

fe) =y g(f(x)=x  ¢g0)=¢

then determining ¢ amounts to calculating g(0). Since
g(f(x;)) = x;, j=iLi—1,...,i—m,

the following suggests itself: determine the interpolating polynomial Q(y) of
degree r or less with Q(f(x;))= x;,j=1i,i—1,...,i~— r, and approximate
g(0) by Q(0). Then select x;,, = Q(0) as the next approximate point to be
included in the interpolation. This method is called determining zeros by
inverse interpolation. Note that it does not require solving polynomial equa-
tions at each step even if r > 3. For r = 1 the secant method results. The
interpolation formulas of Neville and Aitken (see Section 2.1.2) are parti-
cularly useful in implementing inverse interpolation methods. The methods
are locally convergent of superlinear order. For details see Ostrowski (1966)
and Brent (1973).
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In Section 5.5, in connection with Newton’s method, we considered two
techniques for determining additional roots: deflation and zero suppression.
Both are applicable to the root-finding methods discussed in this section.
Here zero suppression simply amounts to evaluating the original polyno-
mial p(x) and numerically dividing it by the value of the product
(x = &) ... (x — &) to calculate the function whose zero is to be determined
next. This process is safe if computation is restricted away from values x
which fall in close neighborhoods of the previously determined roots &, ...,
&, . Contrary to deflation, zero suppression works also if the methods of this
section are applied to finding the zeros of an arbitrary function f(x).

5.10 The A%-Method of Aitken

The A%-method of Aitken belongs to the class of methods for accelerating
the convergence of a given convergent sequence of values x;,

lim x; = ¢

10
These methods transform the sequence {x,} into a sequence {x;} which in
general converges faster towards ¢ than the original sequence of values x;.
Such methods apply to finding zeros inasmuch as they can be used to
accelerate the convergence of sequences {x;} furnished by one of the methods
previously discussed.

In order to illustrate the A?-method, let us assume that the sequence {x;}

converges towards ¢ like a geometric sequence with factor k, |k| < L:

Xip1 — E=k(x; — &), i=01,....
Then k and ¢ can be determined from x;, X;, ,, X;,, using the equations
(5.10.1) Xiv1 — E=k(x; — &), Xjp2— E=k(x;, — &)
By subtraction of these equations,

k= Ni+2 = Nisy ,
Niv1 = X

and by substitution into the first equation, since k # 1,

CNiXiey = X1

Xiv2 = 2N + N

Ay

Using the difference operator Ax;:=x;,; —X; and noting that
A%x; = Ax;,; — Ax; = X;,, — 2X;,; + X;, this can be written as
(Ax;)?

(5.10.2) A

e

= _\‘I.
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The method is named after this formula. It is based on the expectation—to
be confirmed below—that the value (5.10.2) provides at least an improved
approximation to the limit of the sequence of values x; even if the hypothesis
that {x;} is a geometrically convergent sequence should not be valid.

The A%-method of Aitken thus consists of generating from a given se-
quence {x;} the transformed sequence of values

)2
(5.10.3) X =x; — (41— x3) .
Xiv2 = 2Xi4 + X5

The following theorem shows that the x; converge faster than the x; to & as
i — oo, provided {x;} behaves asymptotically as a geometric sequence:

(5.10.4) Theorem. Suppose there exists k, |k| < 1, such that for the sequence
{.\','}, X; :Ié &.’9

Xiv1 — é = (k + 6!')("!' - (;:)9 lim (si = Oa

[Rad- ]

holds, then the values x; defined by (5.10.3) all exist for sufficiently large i, and

x;i—¢
lim ——==0.
v Xi T C

PRrOOF. By hypothesis, the errors e; = x; — ¢ satisfy e;, , = (k + J;)e;. It fol-
lows that

Xip2 —2X 41+ X;=¢€,5,—2¢,, + ¢
(5.10.5) =e(k+ 6i+y)k+8)—2(k+8)+ 1)
=ei((k — 1)* + y;), where y; -0,
Xivg —Xi= €4, — ¢, = ¢k — 1) + 5).
Therefore
Xjyy — 2%, +x,#0

for sufficiently large i, since e; #0, k # 1, and y; —»0. Hence (5.10.3)
guarantees that x; is well defined. By (5.10.3) and (5.10.5),

e, (k=1 +6)
B (e L
for sufficiently large i, and consequently
v _ )2
lim Y78 = i [ - k=D, O

[Rad ]

Ni— & el (k=12 F )l

Consider an iteration method with iteration function ®(x),

(5.10.6) X1 =0(x), i=012 ...,



314 5 Finding Zeros and Minimum Points by Iterative Methods

for determining the zero ¢ of a function f(x) = 0. The formula (5.10.3) can
then be used to determine, from triples of successive elements x;, X;, 1, X; 4
of the sequence {x;} generated by the above iteration function ®, a new
sequence {x;}, which hopefully converges faster. However, it appears to be
advantageous to make use of the improved approximations immediately by
putting

(5.10.7) yi=0(x;), z;=D(y) i=0,1,2,...
— (yi — x;)? )
Xit1 = X ——ﬁ- 2y, + x;

This method is due to Steffensen. (5.10.7) leads to a new iteration function ‘¥,
(5.10.8) Xivy = Y(x;),

x®(P(x)) — d)(x»)z_
(@(x)) = 20(x) + x

Y(x):=
=g
Both iteration functions ® and ¥ have, in general, the same fixed points:

(5.10.9) Theorem. ¥(&) = & implies ®(£) = &. Conversely, if ®(¢)= ¢ and
@'(&) # 1 exists, then P(&) = £&.

PRrOOF. By the definition (5.10.8) of ‘¥,
(€ = PENP@(E)) — 20(2) + &) = (£ — P(9))".

Thus W(¢) = ¢ implies ®(¢) = £. Next we assume that (&) = &, @ is differen-
tiable for x = ¢, and ®'(£) # 1. L’Hopital’s rule applied to the definition
(5.10.8) gives

DO(E)) + EV(DENPV(E) — 2DV (E) _ & + EN(E)? — 260(¢)

YO=""o0@w@-200+1 ~ 1+0EF-200)
O

In order to examine the convergence behavior of ¥ in the neighborhood
of a fixed point £ of ¥ (and ®), we assume that @ is p + 1 times differentiable
in a neighborhood of x = ¢ and that it defines a method of order p, that is,

(5.10.10) @ (E)=-=0P" V() =0, OPE)=p!A+0
(see Section 5.2). For p = 1, we require that in addition

(5.10.11) A=D(E)+ 1,

and without loss of generality we assume ¢ = 0. Then for small x

p+1

O(x) = AxP + P+ 1)

or*b@ex), 0<f<l.
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Thus
®(x) = AxP + 0(x"“),
O(D(x)) = A(AxXP + O(xP* 1) + O((Ax*? + O(xP* 1)+

_jo(x*) itp>1,
T l4ix 4+ 0(x?) ifp=1,

B(x)? = (AxP + O(xP* 1)) = A2x?P + O(x??* 1),
For p > 1, because of (5.10.8),

O(xP**1) — A%x?P + o(x***1)
5.10.12 x) = 1
( ) \P(X-) 0(xp2) _ 2Ax" + 0(xp+ l) + x

— A2 4 O(x?P).

For p = 1, however, since 4 # 1,
Ax2 4+ 0(x°) - AP 4+ 0(x*) (x?)
A%X + O(x?) = 24x + O(x®) + x )

This proves the following

Y(x) =

(5.10.13) Theorem. Let ® be an iteration function defining a method of order p
for computing its fixed point &. For p > 1 the corresponding iteration function
¥ of (5.10.8) determines a method of order 2p — 1 for computing . For p =1
this method is at least of order 2 provided ®'(£) +# 1.

Note that ¥ yields a second-order method, that is, a locally quadratically
convergent method, even if |®'(¢)| > 1 and the ®-method diverges as a
consequence (see Section 5.2)).

It is precisely in the case p = 1 that the method of Steffensen is important.
For p > 1 the W-method does generally not improve upon the ®-method.
This is readily seen as follows. Let x; — ¢ = ¢ with ¢ sufficiently small. Ne-
glecting terms of higher order, we find

D(x;) — & = AeP,
D(D(x;)) — & = AP e,
whereas for x;,, — &, x;, 1 = P(x;),
Xipqg — E= —A%P!
by (5.10.12). Now
|Ap+18p2| < |A282p_1|

for p > 1 and sufficiently small ¢, which establishes ®(®(x;)) as a much better
approximation to & than x;, , = W(x;). For this reason, Steffensen’s method
is only recommended for p = 1.
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EXAMPLE. The iteration function ®(x) = x? has fixed points &; = 0, {; = 1 with
®()=0, @(&)=2,
'(¢)=2

The iteration x;,; = ®(x;) converges quadratically to &, if |xo| < 1. But for
|xo| > 1 the sequence {x;} diverges.
The transformation (5.10.8) yields

x3 x3 . -1+./5
S S S—— h =_ =N,
¥(x) xP+x—1 (x=r)(x—ry) Wih 7.2 2

We proceed to show that the iteration x;.; = ¥(x;) reaches both fixed points for
suitable choices of the starting point x,.

For |x| < 0.5, ¥(x) is a contraction mapping. If |x,| < 0.5 then x;,, = ¥(x;)
converges towards ¢; = 0. In sufficient proximity of £, the iteration behaves as

X1 = P(x) = xP,
whereas the iteration x;.,; = ®(®(x;)) has 4th-order convergence for |xo| < 1:
Xi+1 = D(P(x;)) = xt.
For |xo| > ry, xi+1 = ¥(x;) converges towards ¢, = 1. It is readily verified that
¥(1)=0, W(1)+0.

and that therefore quadratic convergence holds (in spite of the fact that ®(x)did not
provide a convergent iteration).

5.11 Minimization Problems without Constraints

We will consider the following minimization problem for a real function
h: R* > R of n variables:

(5.11.1) determine minh(x).

xeR"

We assume that i has continuous second partial derivatives with respect to
all of its variables, h € C%(R"), and we denote the gradient of h by

9(x)" = Dh(x) = (% %)

and the matrix of second derivatives of h by
0%h
H(x)=|\z5+% Lk=1,...,n
(x) (6x' 6)3‘)’ Lbk=1,...,n

Almost all minimization methods start with a point x, € R" and generate
a sequence of points x;, k > 0, which are supposed to approximate the
desired minimum point . In each step of the iteration, x;, — x,, ;, for which
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g = g(x) # 0 [see (5.4.1.3)}, a search direction s, is determined by some
computation which characterizes the method, and the next point

X1 = X — ASi
is obtained by a line search; i.e., the stepsize 4, is determined so that

h(xp 1) = m.in oul(4), or(A) = h(x, — Asy)

holds at least approximately for x, , ;. Usually the direction s, is taken to be
a descent direction for h, ie.,

(5.11.2) 0x(0) = —gis, <O.

This ensures that only positive values for 4 need to be considered in the
minimization of @,(4).

In Section 5.4.1 we established general convergence theorems [(5.4.1.4)
and (5.4.1.8)} which apply to all methods of this type with only mild restric-
tions. In this section we wish to become acquainted with a few, special
methods, which means primarily that we will discuss a few specific ways of
selecting s, which have become important in practice. A (local) minimum
point x of h is a zero of g(x); hence we can use any zero-finding method on
the system g(x) = 0 as an approach to finding minimum points of h. Most
important in this regard is Newton’s method (5.1.6), at each step
Xp = Xp+1 = X — A S, of which the Newton direction

si=H(x) " gi

is taken as a search direction. This, when used with the constant step length
J, = 1, has the advantage of defining a locally quadratically convergent
method [Theorem (5.3.2)]. But it has the disadvantage of requiring that the
matrix H(x,) of all second partial derivatives of h be computed at each step.
If n is large and if h is complicated, the computation of H(x,) can be very
costly. Therefore methods have been devised wherein the matrices H(x;)™!
are replaced by suitable matrices H,,

S = Hy gy,

which are easy to compute. A method is said to be a quasi-Newton method if
for each k = 0 the matrix H, ., satisfies the so-called quasi-Newton equation

(5-11-3) Hk+l(gk+l _gk)=xk+l - Xk

This equation causes H,, , to behave—in the direction x,, ; — x,—like the
Newton matrix H(x,,,)”!. For quadratic functions h(x)= 4x"Ax +
b™x + ¢, for example, where A4 is an n x n positive definite matrix, the
Newton matrix H(x,,,) ' = A~ ! satisfies (5.11.3) because g(x) = Ax + b.
Further, it seems reasonable to insist that the matrix H, be positive definite
for each k > 0. This will guarantee that the direction s, = H, g, will be a
descent direction for the function h if g, # 0 [see (5.11.2)}:

9isk = gi Hugy > 0.
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The above demands can, in fact, be met: Generalizing earlier work by
Davidon (1959), Fletcher and Powell (1963), and Broyden (1965), Oren
and Luenberger (1974) have found a two-parameter recursion for producing
H, ., from H, with the desired properties. Using the notation

P Xywt = Xk QT Gk+1 — G
and the parameters
(5.11.4) % >0, 6,=0,
this recursion has the form

Hyo i =Y(0u, 0, He, Pis @)

T T
(5.11.5) ¥(3, 6, H, p, q)=7H + (1 +0 qpfz‘l) % —y (;TH%) Hq-q"H
)
p'q
The “ update function” W is only defined if p"q # 0, " Hg # 0. Observe that

H,,, is obtained from H, by adding a correction of rank <2 to the matrix
e Hy:
ik ttk

(pq"H + Hgp").

rank(Hk+l - ‘})k Hk) < 2.

Hence (5.11.5) is said to define a rank-two method.
The following special cases are contained in (5.11.5):

(@) 7% = 1, 6, = 0: the method of Davidon (1959) and Fletcher and Powell
(1963) (“ DFP method ™);

(b) 7« =1, 6, = 1: the rank two method of Broyden, Fletcher, Goldfarb, and
Shanno (* BFGS method ) [see, for example, Broyden (1970)];

(¢) 7= 1, 6, = p{qi/(Pi gk — 95 Hi qx): the symmetric, rank-one method of
Broyden.

The last method is only defined for pJq, # g H, g, . It is possible that
0, < 0, in which case H, , ; can be indefinite even when H, is positive definite
[see Theorem (5.11.9)]. If we substitute the value of 6, into (5.11.5), we
obtain:

zezd
Hyoy=h +“ka:, 2= p — Heqe, %= pige — qi Higy
which explains why this is referred to as a rank-one method.

A minimization method of the Oren-Luenberger class has the following
form:

(5.11.6).

(0)-Start: Choose a starting point x, € R" and an n x n positive definite
matrix Hq (e.g. Hyo = 1), and set gq = g(x,)-
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Fork=0,1, ... obtain x,, ;, H,,, from x,, H, as follows:

(1) If g« = 0, stop: x, is at least a stationary point for h. Otherwise
(2) compute s, = H, gy .
(3) Determine x; ., = x;, — A s, by means of an (approximate) minimization

h(xy+1) = min{h(x, — is,)| 1 = 0},
and set
G 1= 9(Xk+1)s D= Xk 1 — X A= Gk+1 — Gk-
(4) Choose suitable parameter values 7,>0, 6,>0, and compute

H, .y = Y0, 0k, Hy, Px, qx) according to (5.11.5).

The method is uniquely defined through the choice of the sequences {y,},
{6,} and through the line-search procedure in step (3). The characteristics of
the line search can be described with the aid of the parameter y, defined by

(5.11.7) Ge+ 156 = MG S = tigx Higy .

If 5, is a descent direction, g;s, > 0, then y, is uniquely determined by x, , ;.
If the line search is exact, then p, = 0, since gg 1, s, = —@i(A) = 0, @i(4) =
h(x, — A si). In what follows we assume that

(5.11.8) < 1.
If g, # 0 and H, is positive definite, it follows from (5.11.8) that 4, > 0;

therefore
‘IkTPk = —Algk+1 — gi)sk = Ak(l - ﬂk)grcTSk = lk(l - .uk)ngHkgk >0,

and also g, # 0, gf H, g, > 0: the matrix H,,, is well defined via (5.11.5).
The condition (5.11.8) on the line search cannot be satisfied only if

0r(A) = —glx, — As) s < @i(0) = —gis, <0 forall 1> 0.
But then

h(x, — Ase) — h(x) = I 'q);‘(r) dt < —Ag{s, <0 forall 1> 0,
‘0

so that h(x, — is,) is not bounded below as A — oo. The condition (5.11.8)
does not, therefore, pose any actual restriction.

At this point we have proved the first part of the following theorem,
which states that the method (5.11.6) meets our requirements above:

(5.11.9) Theorem. Ifthere is a k > 0in (5.11.6) for which H, is positive definite,
g #+ 0, and for which the line search satisfies u, < 1, then for all -y, > 0,6, =0
the matrix Hy . = (4 6. Hi, Dx» qi) is well defined and positive definite.
The matrix H,,, satisfies the quasi-Newton equation H, ., q, = Py -
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Prook. It is only necessary to show the following property of the function W
given by (5.11.5): Assuming that

H is positive definite, p'q >0, ¢"Hg>0, y>0, 6>0,

then H:=¥(y, 6, H, p, q) is also positive definite.
Let y € R", y # 0, be an arbitrary vector, and let H = LL" be the Cholesky
decomposition of H [Theorem (4.3.3)]. Using the vectors

u=1ITy, vi=I"q
and using (5.11.5), y"Hy can be written

T T.\2 _ '
yTHy = ')vuru + (1 + '}ye U_T?_) (p Y) ,ilrjl (UTu)z 2'}0 T TU

pal i T gy
T,\2 T,)\2 T T 2
_ uru_(LvL)+(I’YL PN e ol S L
?( v'p p'q ' g J/oTv
T,\2 T.\2
>v(u7u —ETE) ) +(£T;{l :
v’y p'q

The Cauchy-Schwarz inequality implies that u"u — (u"v)?/v"v > 0, with
equality if and only if u = av for some o # 0 (since y # 0). If u # av, then
y"Hy > 0. If u = av, it follows from the nonsingularity of H and L that
0 # y = ag, so that

@'yy

THy > =a?pTq>0.
y y pTq
Because 0 # y € R" was arbitrary, H must be positive definite. The quasi-
Newton equation Hg = p can be verified directly from (5.11.5). O

The following theorem establishes that the method (5.11.6) yields the
minimum point of any quadratic function h: R" — R after at most n steps,
provided that the line searches are performed exactly. Since each sufficiently
differentiable function h can be approximated arbitrarily closely in a small
enough neighborhood of a local minimum point by a quadratic function,
this property suggests that the method will be rapidly convergent even when
applied to nonquadratic functions.

(5.11.10) Theorem. Let h(x)= 3x"Ax + b'x + ¢ be a quadratic function,
where A is ann x n positive definite matrix. Further, let x, € R", and let H, be
an n x n positive definite matrix. If the method (5.11.6) is used to minimize h,
starting with xo, Ho and carrying out exact line searches (u; = 0 for all i = 0),
then sequences x;, H;, g;,P: "= X;+1 — Xi»q; = ¢gi+1 — g: are produced with the
properties:

(@) There is a smallest index m < n with x,, = X = — A~ 'b such that x,, = X
is the minimum of h, g,, = 0.
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(b) pla=pAp=0 for 0<i#k<m-—1, p/g;>0 for 0<i<m~— 1.
That is, the vectors p; are A-conjugate.

(c) plgx=0forall0<i<k<m.

(d) Hyq; = 7ixpi for 0 < i<k <m,with

Vis1Viez - k-1 Jori<k—1,

1 fori=k—1

(e) If m = n, then additionally

H,=H,=PDP 'A™ 1,

Vi k’

-
l

Where D==diag(~,»o'”, 71-"’ M) }’n—l.n)’ P:= (pO, Pis--s pn—l)- And lf
v; = 1, it follows that H, = A~ .

Proor. Consider the following conditions for an arbitrary index | > 0:

‘pqu=pprk=0 forO<i#k<I-1,

(A) <plg;>0 for0<i<I—1,
H, is positive definite;

(By) pTg.=0 forall0<i<k<I;

<) Hyq;=7v:.pi for0<i<k<l

If these conditions hold, and if in addition g, = g(x,;) # O, then we will show
that (A;, 1, B;4 1, Ci4¢) hold.

Since H, is positive definite by (A;), g7 H,g, > 0 and s, = H, g, # 0 follow
immediately from g; # 0. Because the line search is exact, 4, is a zero point of

0= ng+ 1= (g1 — /11A51)Tsz,

TH
b= %‘T A'S% > 0;
hence p, = —4;5; # 0 and
(511.11) plgiey = —h8{ g1 =0,
plai= —4si (g1 — 9) = 4isigr = hgi Hig > 0.
According to Theorem (5.11.9), H,,, is positive definite. Further,
pla=plAp=qlp= —hqlHigi= —hy:.plg=0

for i < I, because Ap, = gy, (B;) and (C,) hold. This establishes (A, ;).
To prove (B,,;), we have to show that p/g,,, =0 for all i<I+ 1.
(5.11.11) takes care of the case i = I. For i <[, we can write

1
Ping+1=PiT(gi+1+ > ‘Ij)

j=it+1
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since g; = g;,; — g; by (5.11.6). The above expression vanishes according to
(B;) and (A;; ;). Thus (B, ;) holds.

Using (5.11.5), it is immediate that H;, ,q; = p,. Further (A, ,), (C,) imply
piq:; =0, q/Hgi = v;,.9{p; = 0 for i <1, so that

Hi 1 qi=vHiqi = y17:.1P: = Vi, 141D

follows for i < I from (5.11.5). Thus (C,, ;) holds, too.

We note that (A, By, Co) hold trivially. So long as x, satisfies (b)-(d)
and g(x;) # 0, we can use the above results to generate, implicitly, a point
x;4+ 3 which also satisfies (b)-(d). The sequence x4, x;, ... must terminate:
(A;) could only hold for I < n, since the [ vectors p,, ..., p;—; are linearly
independent [if Y ;<,_; o; p; = 0, then multiplying by pf A fork = 0,...,1 — 1,
gives o py Ap, = 0=> o, = 0 from (A,)]. No more than n vectors in R" can
be linearly independent. When the sequence terminates, say at [ = m,
0 < m < n, it must do so because

gm =0, X, = —A"1b,
i.e. (a) holds. In case m = n, (d) implies
H,Q0=PD
for the matrices P = (po, ..., Pu—1), @ = (9o, ---» gu_1). Since AP = Q, the
nonsingularity of P implies
H,=PDP 147},

which proves (¢) and, hence, the theorem. a

We will now discuss briefly how to choose the parameters 7, , 6, in order
to obtain as good a method as possible. Theorem (5.11.10¢) seems to imply
that the choice 7, = 1 would be good, because it appears to ensure that
lim; H; = A~ (in general this is true for nonquadratic functions only under
certain additional assumptions), which suggests that the quasi-Newton
method will converge *in the same way as the Newton method.” Practical
experience indicates that the choice

w=1 6 =1 (BFGS method)

is good [see Dixon (1971)]. Oren and Spedicato (1974) have been able to give
an upper bound ®(y,, 6,) on the quotient cond(H,, ,)/cond(H,) of the con-
dition numbers (with respect to the Euclidian norm) of H, ., and H, . Mini-
mizing @ with respect to v, and 6, leads to the prescription

. & €
if —<1 then choose 3, :=—, 6,:=0;
g g
. O o
if —>1 then choose 3, ==; , 8,=1;
T
€ ale — o)
if~<1<- thenchoose y;:=1, 6= ———.
ag ET— O
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Here we have used

e=pH; 'py, 0= piqy, =g, H.q,.

Another promising suggestion has been made by Davidon (1975). He was
able to show that the choice

ae—a) . 2et
- ifo<-—
et — o2 Te+1’
Hk =
g .
otherwise,
oc—1

used with y, = 1 in the method (5.11.5), minimizes the quotient A, /Amin Of
the largest to the smallest eigenvalues satisfying the generalized
eigenproblem

determine A€ C, y # 0 so that H,,,y = AH,y, det(H; '"H,,, — Al) = 0.

Theorem (5.11.10) suggests that methods of the type (5.11.5) will converge
quickly even on nonquadratic functions. This has been proved formally for
some individual methods of the Oren-Luenberger class. These results rest,
for the most part, on the local behavior in a sufficiently small neighborhood
U(x) of a local minimum X of h under the following assumptions:

(5.11.12a) H(x) is positive definite,
(5.11.12b) H(x) is Lipschitz continuous at x = X, i.e., there is a A with
[H(x) — H(x)| < A|x — x| for all x € U(x).

Further, certain mild restrictions have to be placed on the line search, for
example:

N N

(5.11.13) For given constants 0 <c¢; <c, <1, ¢; <4, x40 = X, — A4, 5 IS
chosen so that

h(xk+ 1)

T
Gk + 15

T

< h(xk) — €1 Ak Sk
T

< €20k Sks

or

(5.11.14) A4 = min{A = 0|g(x, — A5) S, = e Gu S} | < 1.

Under the conditions (5.11.12), (5.11.13) Powell (1975) was able to show for
the BFGS method (y, = 1, 6; = 1): There is a neighborhood

V(z) < UR)

such that the method is superlinearly convergent for all positive definite
initial matrices H, and all x4 € V(). That is,
T x| -

lim =L 0=,
ivw "xi - Y"

as long as x; # X for all i > 0. In his result the stepsize A, = 1 satisfies
(5.11.13) for all k > 0 sufficiently large.
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Another convergence result has been established for the subclass of the
Oren-Luenberger class (5.11.5) which additionally satisfies

T Try—1
Pi 9k pH by
5.11.15 06, <1, —_ <y < —=,
( ) , QkT Hyqy i ka qx
For this subclass, using (5.11.12), (5.11.14), and the additional demand that
the line search be asymptotically exact, i.e.

|| < cllg|| for large enough k,
it can be shown [Stoer (1977), Baptist and Stoer (1977)] that

imx, =X,  |Xe4n— X|| <yl — x|*> forall k>0
k
for all positive definite initial matrices H, and for ||x, — X|| small enough.
The proofs of all of the above convergence results are long and difficuit.
The following simple example illustrates the typical behaviors of the DFP
method, the BFGS method, and the steepest-descent method (s, *= g in each
iteration step).

We let

h{x, y)=100(y*(3 — x) — x2(3 + x))* + ‘l_(zT;—i)?)i

which has the minimum point x == —2,y:=0.894 271 9099 ..., h(x, y) = 0. For each
method we take
X =01,  yo:=42

1 0
H,:=
° [0 1]

for the BFGS and DFP methods.
Using the same line-search procedure for each method, we obtained the following
results on a machine with eps = 10~ 11:®

as the starting point and let

Steepest
BFGS DFP descent
N 54 47 201
F 374 568 1248
€ < 107 < 1071 0.7

N denotes the number of iteration steps (x;, y;) = (X4 1, yi+1); F denotes the number
of evaluations of h; and ¢ = ||g(xn, yn)| was the accuracy attained at termination.

The steepest descent method is clearly inferior to both the DFP and BFGS
methods. The DFP method is slightly inferior to the BFGS method. (The line
searches were not done in a particularly efficient manner. More than 6 function
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evaluations were needed, on the average, for each iteration step. It is possible to do
better, but the same relative performance would have been evident among the
methods even with a better line-search procedure.)

EXERCISES FOR CHAPTER 5
1. Let the continuously differentiable iteration function ®: R* — R" be given. If
lub(DP(x)) < K <1 forall xe R",
then the conditions for Theorem (5.2.2) are fulfilled for all x, y € R".

2. Show that the iteration
Xi+1 = COS Xy

converges to the fixed point ¢ = cos ¢ for all x, € R.

3. Give a locally convergent method for determining the fixed point & = {/5 of
O(x) = x* + x — 2. (Do not use the Aitken transformation.)

4. The polynomial p(x)= x>~ x?—x—1 has its only positive root near
¢ = 1.839 .... Without using f’(x), construct an iteration function ®(x) having
the fixed point ¢ = ®(¢) and having the property that the iteration converges for
any starting point x, > 0.

S. Show that

lim X; = 2,

i~

Xo:=0, Xiv17=/2 4+ x;.

6. Let the function f; R? - R?

where

exp(x* +y*) -3
X +y—sin(3(x + y))

x
y

be given. Compute the first derivative Df(z). For which z is Df(z) singular?

flz)=

’ ’

7. The polynomial po(x)= x* — 8x> + 24x? — 32x + a, has a quadruple root
x = 2 for a, = 16. To first approximation, where are its roots ifa, = 16 + 1074?

8. Consider the sequence {z;} with z;,, = ®(z;), ®: R —» R. Any fixed point ¢ of ® is
a zero of

F(z)=z — ®(z).
Show that if one step of regula falsi is applied to F(z) with
a; = zj, Xi = Ziv 1,

then one obtains Steffensen’s (or Aitken’s) method for transforming the sequence
{z;} into {u,}.

9. Let /* R — R have a single, simple zero x. Show that, if ®(x) = x — f(x) and the
recursion (5.10.7) are used, the result is the quasi-Newton method

_ f(‘n)? .
f(xn) -f(xn _f(xn))’

=0,1,....

Xn+1'= Xp
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Show that this iteration converges at least quadratically to simple zeros and
linearly to multiple zeros.
Hint: (5.10.13).

10. Calculate x = 1/a for any given a # 0 without using division. For which starting
values x, will the method converge?

11. Give an iterative method for computing "\/E, a > 0, which converges locally in
second order. (The method may only use the four fundamental arithmetic
operations.)

12. Let A be a nonsingular matrix and {X,}, k =0, 1, ..., be a sequence of matrices
satisfying

Xee1=Xo + Xull — AX))
(Schulz’s method).

(a) Show that lub(I — AX,) < 1 is sufficient to ensure the convergence of {X,}
to A~ L. Further, E, =1 — AX, satisfies

Eivy=EE..

(b) Show that Schulz’s method is locally quadratically convergent.
(c) If, in addition, AX, = X, 4 then

AX, =X, A forallk>0.

13. Let the function f: R— R be twice continuously differentiable for all
xe U(x):={x |x — &| < r}in a neighborhood of a simple zero ¢, f(¢) = 0. Show
that the iteration

Yi= X, ‘Afl(xn)- 1f(xn)v
X1 =y =f()7 (), n=01...,
converges locally at least cubically to ¢.

14. Let the function f: R — R have the zero &. Let f be twice continuously differentiable
and satisfy f'(x) # 0 for all xe [ ={x |x — ¢| < r}. The method

f(x)?

Xpsy =Xy n=01,...,

AT

is a quasi-Newton method. Show:

(a) The method has the form
Xnr1 = Xp = q(xa) f(x,)
Give g(x,), and show that there is a constant ¢ such that
la(x) = £() M < e[ £
(b) One can construct a majorizing sequence y, sufficiently close to ¢,
|x, —&| <y, foralln>0.

Give conditions which ensure that y, converges to zero. Using y,, determine
the local order of convergence.
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15. Let the function f: R" — R" satisfy the assumptions

16.

17.

18.

(1) f(x) is continuously differentiable for all x € R";
(2) for all x e R", Df(x)~! exists;

(3) x"f(x) = y(|x|)|x|| for all x € R", where y{p) is a continuous function for
p = 0 and satisfies y(p) - +00 as p - 00;
(4) forall x, he R"

hTDf (x)h = u(|x|)|4|?

with u(p) monotone increasing in p > 0, p(0) =0, and

]

| ulp)dp = +co.

‘o

Then (1), (2), (3) or (1), (2), (4) are enough to ensure that conditions (a)-{c) of
Theorem (5.4.2.5) are satisfied. For (4), use the Taylor expansion

flx+h)—f(x)= | Df(x + th)h dt.

Give the recursion formula for computing the values 4,, B; which appear in
the Bairstow method.

(Tornheim 1964). Consider the scalar, multistep iteration function of r + 1
variables

(p(XOs R STREEN X,)
and the iteration

.Vi+1’=(P()’i»}’i-1,~--,yz'—r), i=0,1,...,

where yo,y-4, ..., y_, are specified. Let ¢ have partial derivatives of at least
order r + 1. y* is called a fixed point of ¢ if for all k=1, ..., r and arbitrary
x;, i # k, it follows that

*) V¥ =0(Xos oy Xko gy Y5 Xpa 1y -0 X))
Show that

(a) The partial derivatives

lo(xg, ..., x,) !
Dolxo, ..., X)) =, = S0 -+ s Su)s = j>
o(xo X)) Ao et oxe s = (so s Isl=Xs;

satisfy D°o(y*, ..., y*) =0 if for some j, 0 <j <r, s;=0. [Note that (*)
holds identically in xq, ..., X4~ 1, X441, - .., X, for all k.]
(b) In a suitably small neighborhood of y* the recursion

(**) Ei+1 <C8i£i-l"'£i—r
holds with ¢; ==|y; — y*| and with an appropriate constant c.

Further, give:

(c) the general solution of the recursion (**} and the local convergence order
of the sequence y;.

Prove (5.9.14).
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Eigenvalue Problems

6.0 Introduction

Many practical problems in engineering and physics lead to eigenvalue
problems. Typically, in all these problems, an overdetermined system of
equations is given, say n + 1 equations for n unknowns &, ..., &, of the form

(601) F(x;i);g jvr’ =0,

in which the functions f; also depend on an additional parameter 4. Usually,
(6.0.1) has a solution x = [&,, ..., &,]" only for specific values 4 = 4, i =1,
2, ..., of this parameter. These values A; are called eigenvalues of the
eigenvalue problem (6.0.1), and a corresponding solution x = x(4;) of (6.0.1)
eigensolution belonging to the eigenvalue 4;.

Eigenvalue problems of this general form occur, e.g., in the context of
boundary value problems for differential equations (see Section 7.3.0). In
this chapter we consider only the special class of algebraic eigenvalue prob-
lems, where all but one of the f; in (6.0.1) depend linearly on x and 4, and
which have the following form: Given real or complex n x n matrices A and
B, find a number A € C such that the system of n + 1 equations

(602) (4= ABb=0,

xHx =1

330
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has a solution x € C". Clearly, this problem is equivalent to finding numbers
A € C such that there is a nontrivial vector x € C", x # 0, with

(6.0.3) Ax = ABx.

For arbitrary 4 and B, this problem is still very general, and we treat it only
briefly in Section 6.8. The main portion of Chapter 6 is devoted to the special
case of (6.0.3) where B:=1 is the identity matrix: For an n x n matrix A, find
numbers A € C (the eigenvalues of A) and nontrivial vectors x € C" (the
eigenvectors of 4 belonging to 1) such that

(6.0.4) Ax = Ax, x#0.

Sections 6.1-6.4 provide the main theoretical results on the eigenvalue prob-
lem (6.0.4) for general matrices A. In particular, we describe various normal
forms of a matrix A connected with its eigenvalues, additional results on the
eigenvalue problem for important special classes of matrices A (such as
Hermitian and normal matrices) and the basic facts on the singular values g;
of a matrix A. i.., the eigenvalues 2 of 4”4 and AA4", respectively.

The methods for actually computing the eigenvalues and eigenvectors of
a matrix A usually are preceded by a reduction step, in which the matrix A4 is
transformed to a “similar ” matrix B having the same eigenvalues as 4. The
matrix B = (b,) has a simpler structure than 4 (B is either a tridiagonal
matrix, b, =0 for |i—k|>1, or a Hessenberg matrix, b, =0 for
i = k + 2), so that the standard methods for computing eigenvalues and
eigenvectors are computationally less expensive when applied to B than
when applied to A. Various reduction algorithms are described in Section
6.5 and its subsections.

The main algorithms for actually computing eigenvalues and eigenvec-
tors are presented in Section 6.6, among others the LR algorithm of Rutis-
hauser (Section 6.6.4) and the powerful QR algorithm of Francis (Section
6.6.6). Related to the QR algorithm is the method of Golub and Reinsch for
computing the singular values of matrices, which is described in Section 6.7.
After touching briefly on the more general eigenvalue problem (6.0.3) in
Section 6.8, the chapter closes (Section 6.9) with a description of several
useful estimates for eigenvalues. These may serve, e.g., to locate the eigen-
values of a matrix and to study their sensitivity with respect to small
perturbations. A detailed treatment of all numerical aspects of the eigenvalue
problem for matrices is given in the excellent monograph of Wilkinson (1965),
and in Golub and van Loan (1983); the eigenvalue problem for symmetric
matrices is treated in Parlett (1980). ALGoOL programs for all algorithms de-
scribed in this chapter are found in Wilkinson and Reinsch (1971), and
FORTRAN programs in the “EISPACK Guide” of Smith et al. (1976) and its
extension by Garbow et al. (1977).
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6.1 Basic Facts on Eigenvalues

In the following we study the problem (6.0.4), i.., given a real or complex
n x n matrix A, find a number A € C such that the linear homogeneous
system of equations

(6.1.1) (A—ADx=0

has a nontrivial solution x # 0.

(6.1.2) Definition. A number A € C is called an eigenvalue of the matrix A if
there is a vector x # 0 such that Ax = Ax. Every such vector is called a

(right) eigenvector of A associated with the eigenvalue A. The set of all
eigenvalues is called the spectrum of A.

The set
L(A):={x|(A - Al)x =0}
forms a linear subspace of C" of dimension
p(4) = n — rank(A — Al),

and a number 4 € C is an eigenvalue of A precisely when L(4) # 0, i.e., when
p(4) > 0 and thus A — A/ is singular:

det(4 — AI)=0.

It is easily seen that @(u):=det(4 — ul) is a nth-degree polynomial of the
form

@)= (= 10" + oy "1+ + 1),
It is called the

(6.1.3) characteristic polynomial

of the matrix A. Its zeros are the eigenvalues of A. If 4,, ..., 4, are the distinct
zeros of ¢(u), then ¢ can be represented in the form

eu) = (=11 — A)7 (e — A)2 - (= &)™

The integer o;, which we also denote by o(4;) = g;, is called the multiplicity
of the eigenvalue A,—more precisely, its algebraic multiplicity.

The eigenvectors associated with the eigenvalue 4 are not uniquely
determined: together with the zero vector, they fill precisely the linear sub-
space L(A) of C". Thus,

(6.1.4). If x and y are eigenvectors belonging to the eigenvalue A of the matrix
A, then so is every linear combination ax + By # 0.
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The integer p(4) = dim L(A) specifies the maximum number of linearly
independent eigenvectors associated with the eigenvalue A. It is therefore
also called the

geometric multiplicity of the eigenvalue A.

One should not confuse it with the algebraic multiplicity o(4).

ExampLES. The diagonal matrix of order n,
D=1I,

has the characteristic polynomial ¢@(u)=det(D — ulI)= (1 — u)". A is the only
eigenvalue, and every vector x € C", x # 0, is an eigenvector: L(4) = C"; furthermore,
6(A) = n = p(4). The nth-order matrix

(6.1.5) CoA) =

also has the characteristic polynomial ¢(r) = (4 — u)" and 1 as its only eigenvalue,
with ¢(4) = n. The tank of C,(4) — Al, however, is now equal to n — 1; thus p(1) =
n—(n—1)=1,and

L(A) = {ae, |x € C}, e, = st coordinate vector.

Among further simple properties of eigenvalues we note:
(6.1.6). Let p(u) =70 + 714+ + 7, u™ be an arbitrary polynomial,and A a
matrix of order n. Defining the matrix p(A) by
plA)=7ol + 7, A+ + 7, A",

the matrix p(A) has the eigenvector x corresponding to the eigenvalue p(A) if
is an eigenvalue of A and x a corresponding eigenvector. In particular, oA has
the eigenvalue oA, and A + I the eigenvalue A + 1.

PrOOF. From Ax = Ax one obtains immediately 4’x = A(Ax) = AAx = A’x,
and in general A'x = A'x. Thus,
pAJ = (rol + 714+ + 7 A7)
= o+ 1A+ + mA")x = p(A)x. O
Furthermore, from
det(A — Al) = det((A — AI)T) = det(AT — AI),
det(A" — 2I) = det((4 — AI") = det((A — AI)T) = det(4 — AI),

there follows:
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(6.1.7). If 4 is an eigenvalue of A, then A is also an eigenvalue of A”, and 1 an
eigenvalue of AY.

Between the corresponding eigenvectors x, y, z,

Ax = Ax,
ATy = 2y,
AHz = Iz,

merely the trivial relationship y = z holds, in view of A = AT In particular,
there is no simple relationship, in general, between x and y, or x and z.
Because of y" = z# and z¥ 4 = Az, one calls z¥, or y7, also a left eigenvector
associated with the eigenvalue A of A. Furthermore, if x # 0 is an eigenvector
corresponding to the eigenvalue 4,

Ax = Ax,

T an arbitrary nonsingular n x n matrix, and if one defines y = T~ 'x, then
T 'ATy=T 'Ax=AT 'x=1y, y#0,
i.e., y is an eigenvector of the transformed matrix
B:=T 'AT
associated with the same eigenvalue A. Such transformations are called
similarity transformations,

and B is said to be similar to A, A ~ B. One easily shows that similarity of
matrices is an equivalence relation, i.e.,

A~ A,
A~B = B~ A,
A~B, B~C = A~C.

Similar matrices have not only the same eigenvalues, but also the same
characteristic polynomial. Indeed,
det(T AT — ul) = det(T~ (A4 — puI)T)
= det(T ') det(A — pul) det(T)
= det(A — ul).

Moreover, the integers p(A), o(A) remain the same: For (1), this follows
from the invariance of the characteristic polynomial; for p(4), from the fact
that, T being nonsingular, the vectors x, ..., x, are linearly independent if
and only if the corresponding vectors y; = T~ !x;, i =1, ..., p, are linearly
independent.
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In the most important methods for calculating eigenvalues and eigenvec-
tors of a matrix A4, one first performs a sequence of similarity
transformations

A= 4,
AD=T71ACDT i=12,...,

in order to gradually transform the matrix A into a matrix of simpler form,
whose eigenvalues and eigenvectors can then be determined more easily.

6.2 The Jordan Normal Form of a Matrix

We remarked already in the previous section that for an eigenvalue 4 of an
n x n matrix A, the multiplicity o(4) of 4 as a zero of the characteristic
polynomial need not coincide with p(4), the maximum number of linearly
independent eigenvectors belonging to 4. It is possible, however, to prove the
following inequality:

(6.2.1) 1<p(A)<o(d)<n
PROOF. We prove only the nontrivial part p(1) < 6(1). Let p := p(4), and let
Xy, --., X, be linearly independent eigenvectors associated with A:

Ax; = Ax;, i=1..,p
We select n — p additional linearly independent vectors x; e C", i=p + 1,
..., n, such that the x;, i=1, ..., n, form a basis in C". Then the square
matrix T:=[x,, ..., x,] with columns x; is nonsingular. Fori=1,..., p,in

view of Te; = x;, e; = T~ 'x;, we now have
T_ lATei = T_ le,- = AT— lxl' = lei .
T~ AT, therefore, has the form

l 0 * *
- 0 Al* Al| B
T 1AT= * * =[T’;]a
0
*x .- *

and for the characteristic polynomial of A, or of T~ ! AT, we obtain
o(p) =det(4 — pl)=det(T~ AT — ul) = (A — p) det(C — ul).

o is divisible by (4 — p)’; hence A is a zero of ¢ of multiplicity at least p.
g
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In the example of the previous section we already introduced the v x v
matrices [see (6.1.5)]
[ 1 1 0]
C.(A)=

0

SO -

and showed that 1 = p(4) < o(4) = v (if v > 1) for the (only) eigenvalue 4 of
these matrices. The unique eigenvector (up to scalar multiples) is e,, and for
the coordinate vectors e; we have generally

(CA) — A)e; = e;_ 4, i=vv—1,...,2,
(C(A) — ADe, = 0.
Setting formally e, =0 for k < 0, then for all i, j > 1,
(CAA) — AlYe;=¢;_;,

(6.2.2)

and thus
(6.2.3) (C.(A)— Ay =0, (CA)—AIy~t+#0.

The significance of the matrices C,(4) lies in the fact that they are used to
build the so-called Jordan normal form J of a matrix. Indeed, the following
fundamental theorem holds, which we state without proof:

(6.2.4) Theorem. Let A be an arbitrary n x n matrix and 4,, ..., 4, its distinct
eigenvalues, with geometric and algebraic multiplicities p(A;) and o(4;), respec-
tively, i = 1, ..., k. Then for each of the eigenvalues 4;,i = 1, ..., k, there exist
p(4;) natural numbers V{, j = 1, 2, ..., p(4;), with

o(A) = v +v§ + - + V0
and there exists a nonsingular n x n matrix T, such that J =T 'AT has the
Sollowing form:

(6.2.5)
[ C,0(4,) 0]

C\'(pl(;l u)(ll)

Cv 1‘”[1'11)

[ 0 -G (A ]

where, for typographical convenience, A[i]= ;. The numbers W, j=1, ...,
p(4;) (and with them, the matrix J) are uniquely determined up to order. J is
called the Jordan normal form of A.
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The matrix T, in general, is not uniquely determined.
If one partitions the matrix T columnwise, in accordance with the Jordan
normal form J in (6.2.5),

1 1 k k
T= [T(l )9 CREEY 7‘5)(}.1)9 ey Tl)a EER) T{p()ik)]’

then from T AT = J, and hence AT = TJ, there follow immediately the
relations

(626) ATY =TPC,0(k), =12 ...k j=12 .., p(k)

Denoting the columns of the n x ' matrix TV without further indices
briefly by t,,, m=1,2, ..., W%,

Tfii) = [tl’ tz PRRIIIN t"j(i’]’
it immediately follows from (6.2.6) and the definition of C, w(4;) that

[0 1 0]

(A= A4D[ty, ..., t\.ju‘)] =[ty, ..., t\.ju')] ’ - ,

| 0 0

or

627) (A—A4Dt,=t,_,, m= w12
- (A’_A.ll)t1=0.

In particular, t,, the first column of TY, is an eigenvector for the eigenvalue
4;. The remaining t,,, m=2, 3, ..., v\, are called principal vectors corre-
sponding to 4;, and one sees that with each Jordan block C‘.J_m(i,-) there is
associated an eigenvector and a set of principal vectors. Altogether, for an
n x n matrix A, one can thus find a basis of C" (namely, the columns of T)
which consists entirely of eigenvectors and principal vectors of A.

The characteristic polynomials
(4 — u)" = det(C, w(k) — pl)
of the individual Jordan blocks C‘.jm(li) are called the
(6.2.8) elementary divisors

of A. Therefore, 4 has only linear elementary divisors precisely if v\ = 1 for
alli and j, i.e, if the Jordan normal form is a diagonal matrix. One then calls
A diagonalizable or also normalizable. This case is distinguished by the exist-
ence of a basis of C” consisting solely of eigenvectors of 4; principal vectors
do not occur. Otherwise, one says that A has “higher,” i.e., nonlinear
elementary divisors.
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From Theorem (6.2.4) there follows immediately:

(6.2.9) Theorem. Every n x n matrix A with n distinct eigenvalues is
diagonalizable.

We will get to know further classes of diagonalizable matrices in Section
6.4.

Another extreme case occurs if with each of the distinct eigenvalues 4,
i=1,..., k, of A there is associated only one Jordan block in the Jordan
normal form J of (6.2.5). This is the case precisely if

p(A)=1 for1t=12 ... k
The matrix A is then called
(6.2.10) nonderogatory,

otherwise, derogatory (an n x n matrix with n distinct eigenvalues is thus
both diagonalizable and nonderogatory). The class of nonderogatory
matrices will be studied more fully in the next section.

A further important concept is that of the minimal polynomial of a matrix
A. By this we mean the polynomial

W) =vo + vip+ o+ o 4T
of smallest degree having the property
y(4)=o.

The minimal polynomial can be read off at once from the Jordan normal
form:

(6.2.11) Theorem. Let A be an n x n matrix with the (distinct) eigenvalues A,,
.., A and with the Jordan normal form J of (6.2.5), and let

T; *= max, <j<p(a) Vy). Then

(6.2.12) Ylp)=(u — A ) (1 — )2 . (u— A)*

is the minimal polynomial of A. Y(u) divides every polynomial y(u) with
x(A4) =0.

Proor. We first show that all zeros of the minimal polynomial  of A, if it
exists, are eigenvalues of A. Let, say, 4 be a zero of y. Then

Ylu) = (1 — Ag(u),

where the polynomial g(u) has smaller degree than ¥, and hence by the
definition of the minimal polynomial, g(4) # 0. There exists, therefore, a
vector z # 0 with x :==g(A)z # 0. Because of y(4) = 0 it then follows that

0=y(A)z= (A — Al)g(A)z = (A — Al)x,



6.2 The Jordan Normal Form of a Matrix 339

i, A is an eigenvalue of A. If a minimal polynomial exists, it will thus have
the form y(u) = (u — 4,)"(u — 4,)* ... (u — A4)™ for certain 7;. We wish to
show now that t;=max v{ will define a polynomial with y(4) = 0. With
the notation of Theorem (6.2.4), indeed, A= TJT ' and thus Y(A)=
Ty(J)T 1. In view of the diagonal structure of J,

J = diag(C,,m(4,), .-, Cy:;lk])(lk));

however, we now have

Y(J) = diag(¥(C,,0(d1)), - -, Y(Co 8 (A)))-
Since y(u) = (14 — 4;)"g(n), there follows
(6.2.13) lﬁ(Cvj(n(l,-)) = (Cvj(i\(i,-) — A I)"g(Cvjm(/l,-)),
and thus, by virtue of t; > v{? and (6.2.3),
¥(C, w(4:)) = 0.

Thus, ¥(J) = 0, and therefore also y(A4) = 0.
At the same time one sees that none of the integers 1; can be chosen
smaller than max v{: If there were, say, 7; < v{", then, by (6.2.3),

(Cvj(iv(ii) — AI)i+0.
From g(4;) # 0 it would follow at once that
B:= g(C‘,jm(li))

is nonsingular. Hence, by (6.2.13), also y/(C, o(4;)) # 0, and neither ¥(J) nor
(A) would vanish. This shows that the specified polynomial is the minimal
polynomial of A.

If, finally, x(u) is a polynomial with y(A) = 0, then yx, with the aid of the
minimal polynomial, can be written in the form

x(w) = gl (p) + r(n),

where deg r < deg . From yx(A)= y(A)=0 we thus get also r(4)=0.
Since  is the minimal polynomial of A, we must have identically
r(u) = 0: y is a divisor of y. O

By (6.2.4), one has
LG X
o(k)= Y v > 1; = max ),
i=1 j
i.e., the characteristic polynomial ¢(u) = det(4 — ul) of A is a multiple of
the minimal polynomial. Equality o(4;) = 7;, i = 1, ..., k, prevails precisely
when A is nonderogatory. Thus,

(6.2.14) Corollary (Cayley-Hamilton). The characteristic polynomial ¢(u) of
a matrix A satisfies p(A) = 0.
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(6.2.15) Corollary. A matrix A is nonderogatory if and only if its minimal
polynomial and characteristic polynomial coincide (up to a multiplicative
constant).

ExAMPLE. The Jordan matrix

1 1
1 1 0
1
11
J =
-1
0 -1
i —_1]_
has the eigenvalues 4, = 1, 4, = —1 with multiplicities

p(l) =2, plh) =3,

a(4) =S5, a(4y) =4
Elementary divisors:

(1 =pP (I=p (=1 =p) (=1 = p) (=1 =)
Characteristic polynomial:
@)= (=11 = 1’ (u + 1)*.

Minimal polynomial:

Ylu) = (n—1P(u + 1)

To 4, = 1 there correspond the linearly independent (right) eigenvectors e,, e,; to
Ay = —1 the eigenvectors e¢, €5, €.

6.3 The Frobenius Normal Form of a Matrix

In the previous section we studied the matrices C,(4), which turned out to be
the building blocks of the Jordan normal form of a matrix. Analogously, one
builds up the Frobenius normal form (also called the rational normal form) of
a matrix from Frobenius matrices F of the form

0 ... ... 0 —y
1 - 0 —v,

. 0 ~Vm-2
0 1 —ym_1
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whose properties we now wish to discuss. One encounters matrices of this
type in the study of Krylov sequences of vectors. By a Krylov sequence of
vectors for the n x n matrix 4 and the initial vector t, € C" one means a
sequence of vectors t;, i =0, 1, ..., m — 1, with the following properties:

(63.2).

(@) t;=At;_y, 121,

(b) to, ty, ..., t,—, are linearly independent,

(c) t, = At,_, depends linearly on ¢t,, ty, ..., t,_: there are constants y;
With £, + Ym-1tm-1+ "+ Yolo =0.

The length m of the Krylov sequence of course depends on ¢, . Clearly,
m < n, since more than n vectors in C" are always linearly dependent. If one
forms the n x m matrix T:=[t,, ..., t,,— ;] and the matrix F of (6.3.1), then
(6.3.2) is equivalent to

rank T =m,
(6.3.3) AT = Altg, ...ty 1] = [ty .-, tw]
=[to, ..., tm—yJF = TF.

Every eigenvalue of F is also eigenvalue of A: From Fz = Az, z # 0, we
indeed obtain for x := Tz, in view of (6.3.3),

x#0 and Ax= ATz= TFz=ATz=Ax.

Moreover, we have:

(6.3.4) Theorem. The matrix F of (6.3.1) is nonderogatory: The minimal poly-
nomial of F is

V() =70+ 7al+  F P " "
= (= 1)" det(F — ul)

Proor. Expanding ¢(u) = det(F — ul) by the last column, the characteristic
polynomial of F is found to be

—Hu 0 —v
1 - —T
@(n) = det s :
1l —p —Vm
0 1 —Ym-1 " H
=(=1"Go+ ikt + -+ Im "+ 4.

By the results (6.2.12), (6.2.14) of the preceding section, the minimum poly-
nomial y(u) of T divides ¢(u). If we had deg ¥ < m = deg ¢, say

Ypy=oo+au+- 4ol g, r<m,
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then from Y(F) =0 and Fe; = ¢;, , for 1 <i < m — 1, the following contra-
diction would result at once:

0=y(Fle, =ape, + o€+ " +0a,_1€ + €4,
= [otg, %gy oees %1, 1,0, ..., 0]T #0.
Thus, deg ¥ = m, and hence Y(u)= (—1)"@(u). Because of (6.2.15), the
theorem is proved. O
Assuming the characteristic polynomial of F to have the zeros A; with
multiplicities ¢;, i= 1, ..., k,
W) =70+ + Tmo BN = (= ) (= )T (= AT
the Jordan normal form of F in (6.3.1), in view of (6.3.4), is given by

C, (A1) 0
Cuz(lz)
0 G

The significance of the Frobenius matrices lies in the fact that they furnish
the building blocks of the so-called Frobenius or rational normal form of a
matrix. Namely:

(6.3.5) Theorem. For every n x nmatrix A there is a nonsingular n x n-matrix
T with

F, 0
(6.3.6) T-1AT = Fa

0 F,
where the F; are Frobenius matrices having the following properties:

(@) If @i(u) = det(F; — ul) is the characteristic polynomial of F;,i=1,...,r,
then @p) is a divisor of @;— (1), i=2,3,...,r.

(b) @,(u), up to the multiplicative constant + 1, is the minimal polynomial of A.

(c) The matrices F; are uniquely determined by A.

One calls (6.3.6) the Frobenius normal form of A.

ProoF. This is easily done with the help of the Jordan normal form [see
(6.2.4)): We assume that J in (6.2.5) is the Jordan normal form of A. Without
loss of generality, let the integers v’ be ordered,

(6.3.7) W22 i=1,2,..,k
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Define the polynomials ¢(u), j =1, ..., r, r = max; <;<x p(4), by

@) = (Ay — 1) (g — o (A —

[using the convention v{?:=0 if j > p(4;)]. In view of (6.3.7), ¢;(u) divides
®;-1(#)and + ¢, (u)is the minimal polynomial of A. Now take as the Frob-
enius matrix F; just the Frobenius matrix whose characteristic polynomial is
@j(1). Let S; be the matrix that transforms F, into its Jordan normal form J;,

S,'—xF,'Sl' =J'~.

A Jordan normal form of 4 (the Jordan normal form is unique only up to
permutations of the Jordan blocks) then is

J' =

[ S, "l rF, Sy
S, F, S,

i Cs, A F, s

r

According to Theorem (6.2.4) there is a matrix U with U'AU = J'. The
matrix T:=US™! with

Sy
S= S2
S,
transforms A into the desired form (6.3.6).
It is easy to convince oneself of the uniqueness of the F;. O

ExAaMPLE. For the matrix J in the example of Section 6.2 one has

o)== pP(—1=pfP= (@ —p* = 24> + 202 + pu— 1),
P2 = (1 — (-1 —p)= — (¢’ — > ~p+ 1),
o3(p) = —(u + 1),

and there follows

0000 :
1000 — 00 -1

Fi=|0 100 2|, F=|10 1], F=[-1
0010 2 01 1
0001 1
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The significance of the Frobenius normal form lies in its theoretical prop-
erties (Theorem (6.3.5)). Its practical importance for computing eigenvalues
is very limited. For example, if the n x n matrix 4 is nonderogatory, then
computing the Frobenius normal form F (6.3.1) is equivalent to the computa-
tion of the coefficients y; of the characteristic polynomial

@(p) = det(4 — pl) = (= 1)"(u" + Yoo "'+ + %),

which has the desired eigenvalues of A as zeros. But it is not advisable to first
determine the y, in order to subsequently compute the eigenvalues as zeros of
¢: In general, the zeros 4; of ¢ react much more sensitively to small changes
in the coefficients 7, of ¢ than to small changes in the elements of the original
matrix A (see Sections 5.8 and 6.9).

ExaMPLE. In Section 6.9, Theorem (6.9.7), it will be shown that the eigenvalue problem
for Hermitian matrices 4 = A is well conditioned in the following sense: For each
eigenvalue 4,(4 + AA) of A + AA there is an eigenvalue 4;(A4) of 4 such that

14(A + AA) — A(A)| < lub(AA).

If the 20 x 20 matrix A has, say, the eigenvalues A;=j, j=1, 2,...,20, then
lub,(4) = 20 because A = A" (see Exercise 8). Subjecting all elements of A to a relative
error of at most eps, i.e.,, replacing A by A + AA with |AA4| < eps|A|, it follows that
(see Exercise 11)

lub,(AA) < lub,(|AA|) < lub,(eps|A|)
< eps./201ub,(A4) < 90 eps.

On the other hand, a mere relative error |Ay;| = eps of the coefficients y; of the
characteristic polynomial @(u) = (1 — 1)(u — 2) ... (u — 20) produces tremendous
changes in the zeros 4; = j of ¢ (see Example (1) of Section 5.8).

The situation is particularly bad for Hermitian matrices with clustered
eigenvalues: the eigenvalue problem for these matrices is still well conditioned
even for multiple eigenvalues, whereas multiple zeros of a polynomial ¢ are
always ill-conditioned functions of the coefficients 7,.

In addition, many methods for computing the coefficients y; of the charac-
teristic polynomial are numerically unstable. As an example, we mention the
method of Frazer, Duncan, and Collar, which is based on the observa-
tion (see (6.3.2) (c)) that the vector ¢ = [y, 715-.-> ¥u—1 1’ is the solution
of a linear system of equations Tc = —t, with the nonsingular matrix T :=
[tos t1s---, ta_1], provided that ¢, ..., t,_; is a Krylov sequence of length n.
Unfortunately, the matrix T is in general ill-conditioned, cond(T) >» 1, so that
the computed solution ¢ can be highly incorrect (see Section 4.4). Indeed,
as k — oo, the vectors t, = A*t, will, when scaled by suitable factors g, con-
verge toward a nonzero vector t = lim, g, ¢, that, in general, does not depend
on the choice of the initial vector t,. The columns of T tend, therefore,
to become “more and more linear dependent” (see Section 6.6.3 and Exer-
cise 12).
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6.4 The Schur Normal Form of a Matrix; Hermitian
and Normal Matrices; Singular Values of
Matrices

If one does not admit arbitrary nonsingular matrices T in the similarity
transformation T~ ! AT, it is in general no longer possible to transform A to
Jordan normal form. However, for unitary matrices T, i.e., matrices T with
THT = I, one has the following result of Schur:

(6.4.1) Theorem. For every n x n matrix A there is a unitary n x n matrix U
with

A’l * e *
A .
U"AU = 2
0 An
Here 2;,i=1, ..., n, are the (not necessarily distinct) eigenvalues of A.

Proor. We use complete induction on n. For n = 1 the theorem is trivial.
Suppose the theorem is true for matrices of order n — 1, and let A be an
n x n matrix. Let A, be any eigenvalue of A4, and x, # 0 a corresponding
eigenvector with ||x; |3 = x{x; = 1, Ax; = 4, x,. Then one can find n — 1
additional vectors x,, ..., x, such that x,, x,, ..., x, forms an orthonormal
basis of C", and the n x n matrix X =[xy, ..., x,] with columns x; is thus
unitary, XX = I. Since

X9AXe, = X" Ax; = 4, X"x, = Ae,
the matrix X? AX has the form

A a
Xiax = |22
e )

where A, is a matrix of order n — 1 and a' € C"~!. By the induction hypoth-
esis, there exists a unitary (n — 1) x (n — 1) matrix U, such that

[ 1. % . . . x
A

U4,U, =

The matrix
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then is a unitary n x n matrix satisfying

1 0 1 0
HAU = XHAX
vtau |0 Uﬂl [0 Ull
_ 1
) 0 A1 0 U1
L
. *
| 0 An |
The fact that 4;, i=1, ..., n, are zeros of det(U” AU — ul), and hence
eigenvalues of A, is trivial. O

Now, if A = A" is a Hermitian matrix, then
(U"AU)" UM AHURH = UH AU

is again a Hermitian matrix. Thus, from (6.4.1), there follows immediately

(6.4.2) Theorem. For every Hermitian n x n matrix A = A" there is a unitary
matrix U =[x, ..., x,] with

A 0
U“AU=U"AU=[ ]

0 A

The eigenvalues A;, i=1, ..., n, of A are real. A is diagonalizable. The ith
column x; of U is an eigenvector belonging to the eigenvalue A;: Ax; = A;x;. A
thus has n linearly independent pairwise orthogonal eigenvectors.

If the eigenvalues 4; of a Hermitian n x n matrix A = A" are arranged in
decreasing order,

A Zhy 22,
then A, and 4, can be characterized also in the following manner [see (6.9.14)
for a generalization]:
HA HA

(6.4.3) Ay = max %—x, A, = min z—ﬁ—x.
Proor. If U AU = A = diag[4,, ..., 4,}, U unitary, then for all x # 0,

xTAx  (x"U)U"AU(U"x) y"Ay 2 A mil? z Mmf

xflx (x"U)(U"x) Tl ST T
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where y = U"x = [n,, ..., n,]" # 0. Taking for x # 0 in particular an eigen-
vector belonging to A,, Ax = 1,x, one gets x¥Ax/x¥x =1, so that
Ay = MaXg 4 ece X" Ax/x"x. The other assertion in (6.4.3) follows from what
was just proved by replacing A with — A. O

From (6.4.3) and the definition (4.3.1) of a positive definite (positive
semidefinite) matrix A, one obtains immediately

(6.4.4). A Hermitian matrix A is positive definite (positive semidefinite) if and
only if all eigenvalues of A are positive (nonnegative).

A generalization of the notion of a Hermitian matrix is that of a normal
matrix: An n x n matrix A is called normal if

AHA = AAH,

ie, A commutes with AY. For example, all Hermitian, diagonal, skew
Hermitian, and unitary matrices are normal.

(6.4.5) Theorem. An n x n matrix A is normal if and only if there exists a
unitary matrix U such that
A 0
U 'AU = U"AU =
0 An
Normal matrices are diagonalizable and have n linearly independent pairwise

orthogonal eigenvectors x; (i=1, ..., n), Ax; = A;x;, namely the columns of
the matrix U = [x,, ..., x,).

ProOOF. By Schur’s theorem (6.4.1), there exists a unitary matrix U with

"/11 * . . . *x ]
UM AU = . . =R = [ry]
-
| O .

From A7 A = AA" there now follows
R¥R = U"A"UU" AU = UM AY AU
= U"A4"U = U"auUu" AU
= RRY.
For the (1, 1) element of R"R = RR" we thus obtain

My = 4P =4+ > rul?s
k=2
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hence r,, =0 for k=2, ..., n. In the same manner one shows that all
nondiagonal elements of R vanish.

Conversely, if 4 is unitarily diagonalizable, U AU = dlag(ll, ooy Ay) =D,
UMU = I, there follows at once

A4 = UD"U"UDUY = U|DPU" = UDU"UD"U" = 44". 0O

Given an arbitrary m x n matrix A, the n x n matrix 4”4 is positive
semidefinite, since x"(47A)x = [Ax||]3 > 0 for any x € C". Its eigenvalues
Ay = A4, =---= A, = 0 are nonnegative by (6.4.4) and can therefore be writ-
ten in the form A, = 6 with g, > 0. The numbers ¢, > - >0, >0 are
called

(6.4.6) singular values of A.

Replacing the matrix A in (6.4.3) by 4" A4, one obtains immediately

A A
(64.7) o,= max 4], = lub,(4), 6,= min H x“z
oexeer X2 0#xeC" H"”z

In particular, if m = n and A is nonsingular, one has

A
— = max ” “2 = max “ y“l l bz( )’
(6.4.8) 0n xro |Axl2  ye0  I¥l2
cond,(A) = lub,(A4) lub,(A™ ') =6, /5,.
The smallest singular value g, of a square matrix A gives the distance of 4 to
the “ nearest” singular matrix:

(6.4.9) Theorem. Let A and E be arbitrary n x n matrices and let A have the
singular values 6, 2 6,2 - 2 0,2 0. Then

(a) lub,(E) =6, if A + E is singular.

(b) There is a matrix E with lub,(E) = o, such that A + E is singular.

PrOOF. (a): Let A + E be singular, thus (4 + E)x = 0 for some x # 0. Then
(6.4.7) gives

Oallx]l2 < [|Axll2 = || = Ex|2 < luby(E)|x]2;

hence o, < lub,(E).

(b): If 6, = 0, there is nothing to prove. For, by (6.4.7), one has 0 = || Ax|,
for some x # 0, so that A4 already is singular. Let, therefore, o, > 0. Because
of (6.4.7), there exist vectors u, v such that

| 4ulz = o, lufl2 = 1,

1
v==6—'l Au, o= 1
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For the special n x n matrix E:= —g, vu?| one then has (4 + E)u =0, so
that 4 + E is singular, and moreover
| ut'x]|
lub,(E) = ¢, max |v|, +—— = g,. O
x#0 llx[l2

An arbitrary m x n matrix A can be transformed unitarily to a certain
normal form in which the singular values of A appear:

(6.4.10) Theorem. Let A be an arbitrary (complex) m x n matrix. Then:

(@) There exist a unitary m x m matrix U and a unitary n x n matrix V such
that U"AV = X is an m x n “diagonal matrix” of the following form:

D 0 .
Z:lo 0], D::dlag(a'l,...,()'r), 012022"'>G,>0,

Here a4, ..., 6, are the nonvanishing singular values of A, and r is
the rank of A.
(b) The nonvanishing singular values of A" are also precisely the numbers o,
ey Oy

The decomposition 4 = ULV is called
(6.4.11) the singular-value decomposition of A.

Proor. We show (a) by mathematical induction on m and n. For m =0 or
n =0 there is nothing to prove. We assume that the theorem is true for
(m — 1) x (n — 1) matrices and that A is an m x n matrix withm > 1,n > 1.
Let o, be the largest singular value of A. If ¢, = 0, then by (6.4.7)also 4 = 0,
and there is nothing to show. Let, therefore, 6, > 0, and let x; # 0 be an
eigenvector of A” A4 for the eigenvalue o3, with ||x, |, = 1:

(6.4.12) AYAx, = olx,.
Then one can find n — 1 additional vectors x,, ..., x, € C" such that the
n x n matrix X :=[x;, x,, ..., x,] with the columns x; becomes unitary,

X"X = I,. By virtue of | Ax, |3 = x¥ A" Ax; = ¢2x{x, = o} > 0, the vector
y1 = (1/6,)Ax,; € C™ with ||y, ||, = 1 is well defined, and one can find m — 1
additional vectors y,, ..., ¥, € C™ such that the m x m matrix Y = [y, y,,
..+» Ym] is likewise unitary, Y'Y = I,,. Now from (6.4.12) and the definition
of y;, X, and Y, there follows at once, with e, :=[1,0,...,0]" € C", e, ==[1,0,
..., 0]" € C™, that

YHAXel = Yl’Axl = 01 YHyl = O'lél € Cm
and

(YHAX e, = X"A"Ye, = X" Ay, = 1 X" A" Ax,
51

= UIXHXI = Ulel GC",
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so that the matrix Y?AX has the following form:

o, O
0 Al
Here A is an (m — 1) x (n — 1) matrix.
By the induction hypothesis, there exist a unitary (m — 1) x (m — 1)
matrix U and a unitary (n — 1) x (n — 1) matrix V such that

Do
V()

with £ a (m — 1) x (n — 1) “diagonal matrix” of the form indicated. The
m X m matrix

YHAX =

OHAV =% , D:=diag(s,,...,0,), 0;=2032 " 2>0,>0,

1 0
U=Y- ~
U-
is unitary, as is the n x n matrix
1 0
V:: . -
X 0 1748
and one has
1 0 1 0 1 0jle, O]|1 O
H = 2 YH | = = 1 - -
vav=[y gufraly 5l=[5 |5 5o ¥
oy 0 _ D 0 _ —
=l 3 —-[0 0 =2, D :=diag(o,, ..., 6,),

Z being an m x n diagonal matrix with 6, > - > 0, > 0, 62 = A,,(4" A).
Evidently, rank A = r, since rank 4 = rank U"AV = rank X.

We must still prove that ¢, > 7, and that the o, are the singular values of
A. Now from U AV = I there follows, for the n x n diagonal matrix Z¥Z,

Y = diag(e?, ..., 62,0, ..., 0) = VF A" UU" AV = VH (4" 4)V,

so that [see Theorem (6.4.2)] 2, ..., 67 are the nonvanishing eigenvalues of
A" A, and hence g4, ..., g, are the nonvanishing singular values of A. Because
of 6% = A.(A" A), one also has o, > 0, . O

The unitary matrices U, V in the decomposition UY AV = T have the
following meaning: The columns of U represent m orthonormal eigenvectors
of the Hermitian m x m matrix AA", while those of V represent n orthonor-
mal eigenvectors of the Hermitian n x n matrix A” 4. This follows at once
from UPAARU = £2H, VP 4" AV = T¥%, and Theorem (6.4.2). Finally we
remark that the pseudoinverse A* (Section 4.8.5) of the m x n matrix 4 can
be immediately obtained from the decomposition U¥AV = Z: If

D 0 .
Z=[0 0], D=d1ag(al""’ar)’ 6y 20,>0,
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then the n x m diagonal matrix

D' 0
t =
==’
is the pseudoinverse of X, and one verifies at once that the n x m matrix
(6.4.13) At =VIryUH

satisfies the conditions of (4.8.5.1) for a pseudoinverse of A, so that A*, in
view of the uniqueness statement of Theorem (4.8.5.2), must be the pseudo-
inverse of A.

6.5 Reduction of Matrices to Simpler Form

The most common methods for determining the eigenvalues and eigenvec-
tors of a dense matrix A proceed as follows. By means of a finite number of
similarity transformations

A=Ag—> A > > A,,
Ai=T;'A,_| T, i=12...,m,
one first transforms the matrix 4 into a matrix B of simpler form,
B= A, =T AT, T=T1TT,... T,,

and then determines the eigenvalues 4 and eigenvectors y of B, By = Ay.
Forx:=Ty=T, ... T, y, since B= T~ 'AT, we then have

Ax = Ax,

ie., to the eigenvalue 2 of A4 there belongs the eigenvector x. The matrix B is
chosen in such a way that

(1) the determination of the eigenvalues and eigenvectors of B is as simple as
possible (i.e., requires as few operations as possible) and

(2) the eigenvalue problem for B is not (substantially) worse conditioned
than that for A (i.e., small changes in the matrix B do not impair the
eigenvalues of B, nor therefore those of A, substantially more than
equally small changes in A4).

In view of
B= T AT,

B+ AB= T~ (A + AA)T, AA=TAB T},

given any vector norm || - | and corresponding matrix norm lub(- ), one gets
the following estimates:

lub(B) < cond(T) lub(A),
lub(AA) < cond(T) lub(AB),
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and hence

lub(AB)

WRAA) _ (cond(T)y? lub(B) -

lub(4)
For large cond(T) > 1 the eigenvalue problem for B will be worse condi-
tioned than that for A. Since

cond(T) = cond(T; ... T,,) < cond(T;) - .. cond(T,,),

well-conditioning will be insured if one chooses the matrices T; such that
cond(T;) does not become too large. This is the case, in particular, for the
maximum norm || x|, = max; | x;| and elimination matrices of the form (see
Section 4.1)

1 0
T=G = 1 Li<1
B UTSWA Il st
0 L, 0 1)
(6.50.1) -
1 0]
G~_1= 1 ,
’ —lisa;
[ 0 -1, 0 " 1]

cond(T;) < 4,

and also for the Euclidean norm ||x||, = /x"x and unitary matrices T, = U
(e.g., Householder matrices) for which cond(T;) = 1. Reduction algorithms
using either unitary matrices T; or elimination matrices T; as in (6.5.0.1) are
described in the following sections. The “simple” terminal matrix B = A,
that can be achieved in this manner, for arbitrary matrices, is an upper
Hessenberg matrix, which has the following form:

r * . . . . . *
*
0 .
B_——_ . . - . N bik=0 fOI'le.—Z
LO R | T

For Hermitian matrices A = A" only unitary matrices T;, T; ' = T}, are

used for the reduction. If 4;_, is Hermitian, then so is A;= T; '4;,_; T;:

A‘iq = (T?Ai—l Ti)H = T?A?-l T, = TnﬂAi~1 T, = A;.
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For the terminal matrix B one thus obtains a Hermitian Hessenberg matrix,
ie., a (Hermitian) tridiagonal matrix, or Jacobi matrix:

8 0]

V2 _

B= 5 5i=6i'
[ 0 0, ]

6.5.1 Reduction of a Hermitian Matrix to Tridiagonal Form.
The Method of Householder

In the method of Householder for the tridiagonalization of a Hermitian

n x n matrix A" = 4=:4,, one uses suitable Householder matrices (see
Section 4.7)

TH=T;'=T =1~ fuul
for the transformation
A= TflAi—lﬂ-

We assume that the matrix 4;_, = [a;] has already the following form:

Ji—1| ¢ 0
(6.5.1.1) Aig= | o fal | =[ua)
o |a|d]
with
[ 6, 7 0 |0]
Myt : : Xiva,i
= . ¥i-1 101, a; = ‘
0 - - -y Sy i
A Yi |0

According to Section 4.7, there is a Householder matrix Tof order n — i
such that

(65.12) Tia;=k- e eC .
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T; has the form T, = I — puu®, ue C"~, and is given by
— ] - : 2 =‘1/(0’(0’+ |ai+l.i')) lfO'ﬁéO,
0= Jlai © j}; X ol B 10 otherwise,

(6.5.1.3) ki=—ge ifa, ;i =e" .l

e(o + |y 1))
Fi+2,i

Api

Then, for the unitary n x n matrix T;, partitioned like (6.5.1.1),

11010 }i-1
T:=|0|1]0 ,
0|0 |T,

0 Tial ~i’:1'|—lTi
(6, % 0o |0 ]
72 - ~ 0
Yi-1 b
0 Yi-1 51’—1 Tl
=10 0 Y O | ¥:i+10...0 | =4,
Yi+1
0 S~ -~ -~
0 iAo T;
| 0 i

Since T; = I — Buu”, one can compute T; 4;_, T, as follows:

A Tio= (1 — Puut)A;_ (I — Buu®)

= A,y — BA;_uu — BuuP A, + Bruut A, uu®.
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Introducing for brevity the vectors p, g € C"™/,
p= ﬁz i-14

B
a=p L
it follows immediately, in view of § > 0, p"u = But 4, _ ,u = (p"u)¥, that

T.A,_,T,=A,_, — pu" — up” + Bup"uu

2
= ’:{i—l ~ ugq' — qu.

The formulas (6.5.1.1)-(6.5.1.4) completely describe the ith
transformation

(6.5.1.4) =A,_,—u [p —é(p"u)ur - [p —g(p"u)u|u"

A= Ti_lAi—l’I;'

Evidently,
6 h. O
B=A, ,= V2 - 5, =3,
0 Yn O

is a Hermitian tridigonal matrix.
A formal ALGoL-like description of the Householder transformation for a
real symmetric matrix A = A" = [a;] with n > 2 is

for i:=1 step 1 until n — 2 do

begin
;"= ay;
n
5= Y la;|?;ifaiey ; <Othens= —s;
a\ j=i+1
Vi1 T =S, € =S+ a0

if s = O then begin g;:=0; go to MM end;
B=ai=1/(s x e);

Uip1 = Qivq,i 77 €5

for j:=i+ 2 step 1 until ndo u;=ay;

for j:=i+ 1 step 1 until n do

j n
Pj=( Z ap Xy + Z aij“k)xﬂ;

k=it1 k=j+1
sk==( Y pjx uj) x B/2;
j=i+1

for j:=i + 1 step 1 until n do
q;=p; — sk x u;;
for j:=i+ 1 step 1 until n do
for k=i + 1 step 1 until j do
aj,"'—‘ajk — QJ X U — uj X qy;
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MM: end;
5n—l :zan—-l,n—l; 571 ::an,n; }'n:z an,n~1;

This program takes advantage of the symmetry of A: Only the elements
a; with k < j need to be given. Moreover, the matrix A4 is overwritten wnh
the essential elements B;, u; of the transformation matrix T;= I — B u u",
i=1,2,...,n— 2: Upon exiting from the program, the ith column of 4 will
be occupied by the vector

a;
B:
a1 =11, i=1,2...,n—2.
: u;
am’
(The matrices T;, i = 1, 2, ..., n — 2, are needed for the “back transforma-

tion” of the eigenvectors: if y is an eigenvector of A, _, for the eigenvalue 4,

An—Zy = Ay’
then x:=T, T, ... T,_, y is an eigenvector of A.)

Tested ALGOL programs for the Householder reduction and back trans-
formation of eigenvectors can be found in Martin, Reinsch, and Wilkinson
(1971); FORTRAN programs, in Smith et al. (1976).

Applying the transformations described above to an arbitrary non-
Hermitian matrix A of order n, the formulas (6.5.1.2), (6.5.1.3) give rise to a
chain of matrices A4;,i=0, 1, ..., n — 2, of the form

AO:ZA,
[ * L. x|+ . . . %]
0 * k| k| % *

Ao =
0 AERE *
* % *
* . ox
|.0 * 4 g

The first i — 1 columns of 4;_; are already those of a Hessenberg matrix.
A,_, is a Hessenberg matrix. During the transition from A;_, to A, the
elements a of A;_, with j, k < i remain unchanged.
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ALGOL programs for this algorithm can be found in Martin and Wilkin-
son (1971); FORTRAN programs, in Smith et al. (1976).

In Section 6.5.4 a further algorithm for the reduction of a general matrix
A to Hessenberg form will be described which does not operate with unitary
similarity transformations.

The numerical stability of the Householder reduction can be shown in the
following way: Let 4; and T; denote the matrices obtained if the algorithm is
carried out in floating-point arithmetic with relative precision eps; let U;
denote the Householder matrix which, according to the rules of the algor-
ithm, would have to be taken as transformation matrix for the transition
A,_, — A, in exact arithmetic. Thus, U; is an exact unitary matrix, while T;is
an approximate unitary matrix, namely the one obtained in place of U; by
computing U; in floating-point arithmetic. The following relations thus
hold:

By means of the methods described in Section 1.3 one can now show [see,
e.g., Wilkinson (1965)] that

luby(T; — U;) < f(n) eps,
(6515) —|~= fl(Tl-/Ti_IT‘)= Ti/ai—lfl' + G.',
lub,(G;) < f(n) eps lub,(A4;_ ),
where f(n) is a certain function [for which, generally, f(n) = O(n*), « = 1].

From (6.5.1.5), since lub,(U;)= 1, U{ = U; ! = U, (U; is a Householder
matrix!), there follows at once

luby(R) < f(n)eps, R;=T,—- U,
A;=U7'4;,_ U +RA,_,U;+U;A_,R; + R A;_ R, + G,
=U'4,_,U; + F,,

where

lub,(F;) < eps - f(n)[3 + eps - f(n)] luby(A4;-,),
or, since f (n) eps < 3, in first approximation:

lub,(F;) < 3 eps - f(n) lub,y(4;_,),
(6.5.1.6) lub,(A4;) < (1 + 3 eps - f(n)) lub,(4;_,)

L (1 + 3 eps - f(n)) luby(A).

For the Hessenberg matrix A,_,, finally, since A = A,, one obtains

(65.1.7) A,_,=U;Y . UiYA+F)U,...U,_,,
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where

n-2
F=Y U,U,...UFU'...U;'Ui .

i=1
It thus follows from (6.5.1.6) that

n—2
luby(F) < Y lub,(F)
i=1

2

<3 eps () lubs(A) X, (1 + 3 eps () ™,

or, in first approximation,
(6.5.1.8) lub,(F) < 3(n — 2)f(n) eps luby(A).

Provided nf (n) is not too large, the relations (6.5.1.7) and (6.5.1.8) show that
the matrix A4,_, is exactly similar to the matrix A + F, which is only a slight
perturbation of A4, and that therefore the method is numerically stable.

6.5.2 Reduction of a Hermitian Matrix to Tridiagonal or
Diagonal Form: The Methods of Givens and Jacobi

In Givens’ method (1954), a precursor of the Householder method, the
chain

A=tAg—> A= = Ay, Ai=Ti "4, T,

for the transformation of a Hermitian matrix A to tridiagonal form B = A,
is constructed by means of unitary matrices T; = Q;, of the form (¢, ¥ real)

(1 0]

cos @ —e Ysin @ i

e sin @ cos @ k

Lo 1]
In order to describe the method of Givens we assume for simplicity that
A = A" is real; we can choose in this case ¢ = 0, and Qj is orthogonal. Note
that in the left multiplication 4 - Q"4 = Qf 4 only rows j and k of 4
undergo changes, while in the right multiplication 4 — AQ; only columns j
and k change. We describe only the first transformation step A = Ay —
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Ti'A,=:Ay— Ay Ty = T{ ' A, T, = A,.In the half step 4, — A, the matrix
T, = Q,;, T7 ! = QY is chosen such (see Section 4.9) that the element of
Ay = QY5 A, in position (3, 1) is annihilated; in the subsequent right multi-
plication by Q, 3, 45 —» 4, = A5 Q,3, the zero in position (3, 1) is preserved.
Below is a sketch for a 4 x 4 matrix, where changing elements are
denoted by *:

X X X X X X X X
X X X X % % % %*
Ay = SO A, = = A
0 X X X X QZBO 0 * %* %*
X X X X |l X X X x
Fx * 0 x7
x ¥ ¥ x
’ —_—
——’AOQZ3= 0 * * % _.Al'
| x  * ¥ x ]

Since with A,, also 4, is Hermitian, the transformation Ay — A; also anni-
hilates the element in position (1, 3). After this, the element in position (4, 1)
is transformed to zero by a Givens rotation T, = Q,4, etc. In general, one
takes for T, successively the matrices

S-223’ 924, ey QZn’
Q34., ...,93",

Qn—l.n’

and chooses Q,j=2,3,...,n— LLk=j+ 1,j + 2,...,n,s0 as to annihilate
the element in position (k, j — 1). A comparison with Householder’s method
shows that this variant of Givens’ method requires about twice as many
operations. For this reason, Householder’s method is usually preferred.
There are, however, modern variants (“rational Givens transformations ”)
which are comparable to the Householder method.

The method of Jacobi, too, employs similarity transformations with the
special unitary matrices Q; in (6.5.2.1); however, it no longer produces a
finite sequence ending in a tridiagonal matrix, but an infinite sequence of
matrices A, i =0, 1, 2, ..., converging to a diagonal matrix

Ay 0
D= -
0 An
Here, the A; are just the eigenvalues of A. To explain the method, we again

assume for simplicity that A4 is a real symmetric matrix. In the transforma-
tion step

AD 5 AU+ - Qg‘ A(“Qﬂ‘
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the quantities ¢ ‘= cos ¢, s=sin ¢ of the matrix Q;, j <k, in (6.5.2.1) are
now determined so that aj, = 0 (we denote the elements of A" by a,,, those
of A"V by a):

’ / ’ t
all e alj .. alk Py aln
’ ’ ’
aj aj; 0 aj,
AGHD = :

’ ’ ’
ayy 0 a, | ... ay, l
’ 4 ’ ’
anl au} ank—J ann J

Only the entries in frames are changed, according to the formulas

’ 7
a,j= aj = ca,; + 5a,, |

, , > for r#j, k,
A = Gy = — 54, +cay |
o pl 2
(6.52.2) aj; = caj; + s”ay + 2csay,
U 2 2 —
ajk——a,u--— —Cs(ajj—akk)"l'(c — S )ajk—O,

Ay = s*aj; + cay, — 2csay, .
From this, one obtains for the angle ¢ the defining equation
2a;,

tan 29 = —+5F— I(p|$§.

qjj — Qi

By means of trigonometric identities, one can compute from this the quanti-
ties ¢ and s and, by (6.5.2.2), the q,,.

It is recommended, however, that the following numerically more stable
formulas be used [see Rutishauser (1971), where an ALGOL program can
also be found]. First compute the quantity 9 :=cot 2¢ from

a;—a
9:= Jzzj;!‘,k_ ,
and then ¢ *=tan ¢ as the root of smallest modulus of the quadratic equation
2 +2t9—-1=0,
that is,
s(9) 1 if3>0

t=-—-———-———_, s(s):’ X
|9} + 1+ 9 |—1 otherwise,
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or t:=1/29if | 9| is so large that 9> would overflow. Obtain the quantities c
and s from

1
Cm—— s=tc.
S+ ¢
Finally compute the number 1 :=tan(¢/2) from

S
1+¢’

and with the aid of s, t, and  rewrite the formulas (6.5.2.2) in a numerically
more stable way as

a;j = a:ir:= arj + 5 (ark - Ta,j)| fOl' r :# . k
’ P ) Ks

Gy =Gy, ' =Qy — S (arj + Tark)‘

aj; = aj; + tag,

a"ik = a;(J = 0’

Qi = Ay, — tay.

For the proof of convergence, one considers
S(40) = T laul, S = T [ayf,
j*k itk
the sums of the squares of the off-diagonal elements of A and A%+ 1),
respectively. For these one finds, by (6.5.2.2),
0 < S(A V) = §(49) — 2| a;)* < S(A?) if ay # 0.

The sequence of nonnegative numbers S(A“) therefore decreases monoton-
ically, and thus converges. One can show that lim; . , S(4A®") = 0 (i.e., the A?

converge to a diagonal matrix), provided the transformations Q are
executed in a suitable order, namely row-wise,

lea QIS’ R an
Qr3,..., Qy,

Qn-l.n

and, in this order, cyclically repeated. Under these conditions one can even
prove quadratic convergence of the Jacobi method, if A has only simple
eigenvalues:
_ @2 -1
s(aeemy < SAD i pe="0 1)
o 2
é=min |1,(4) — 1,(4)| >0
itj
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[for the proof, see Wilkinson (1962); further literature: Rutishauser (1971);
Schwarz, Rutishauser, and Stiefel (1972), Parlett (1980)].

In spite of this rapid convergence and the additional advantage that an
orthogonal system of eigenvectors of A can easily be obtained from the Q;
employed, it is more advantageous in practical situations, particularly for
large n, to reduce the matrix A to a tridiagonal matrix J by means of the
Householder method (see Section 6.5.1) and to compute the eigenvalues and
eigenvectors of J by the QR method, since this method converges cubically.
This all the more so if A has already the form of a band matrix: in the QR
method this form is preserved; the Jacobi method destroys it.

We remark that Eberlein developed a method for non-Hermitian
matrices similar to Jacobi’s. An ALGOL program for this method, and further
details, can be found in Eberlein (1971).

6.5.3 Reduction of a Hermitian Matrix to Tridiagonal Form:
The Method of Lanczos

Krylov sequences of vectors g, Aq, A”q, ... belonging to an n x n matrix A
and a starting vector q € C" were already used for the derivation of the
Frobenius normal form of a general matrix in Section 6.3. They also play an
important role in the method of Lanczos (1950) for reducing a Hermitian
matrix to tridiagonal form. Closely related to such a sequence of vectors is a
sequence of subspaces of C"

K(g, A):= span[gq, Aq, ..., A7 q], i>1, K(g, A):= {0},

called Krylov spaces: K(q, A) is the subspace spanned by the first i vectors
of the sequence {A'q};.o. As in Section 6.3, we denote by m the largest
index i for which g, Ag,..., A" 'q are still linearly independent, that is,
dim K (g, A) = i. Then m < n, A™q € K,,(q, A), the vectors g, Aq, ..., A" 'q
form a basis of K,(g, A), and therefore 4K, (g, A) = K,,(g, A): the Krylov
space K (g, A) is A-invariant and the map x — ¢(x) := Ax describes a linear
map of K, (g, A) into itself.

In Section 6.3 we arrived at the Frobenius matrix (6.3.1) when the map ¢
was described with respect to the basis g, Aq, ..., A™ q of K,,(g, A). The idea
of the Lanczos method is closely related: Here, the map ¢ is described with
respect to a special orthonormal basis q, g5, - . -, 4, of K,(g, A), where the g;
are chosen such that for all i = 1, 2, ..., m, the vectors ¢, q,, ..., q; form an
orthonormal basis of K;(g, A). If A = A is a Hermitian n x n matrix, then
such a basis is easily constructed for a given starting vector g. We assume
" g # 0 in order to exclude the trivial case and suppose in addition that | q| =
1, where ||| is the Euclidean norm. Then there is a three-term recursion
formula for the vectors g; (similar recursions are known for orthogonal poly-
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nomials, cf. Theorem (3.6.3))

q9: =4, 7190:=0

(6.53.1a)
Ag; = VGiy + 0idi + Nivadiny forix1,
where
6= q{'Ag;
(6.5.3.1b) Vo= lrll - withrii= Ag; — 6:9: — vy

Gis1 = Ti/Vi+1, if y0q #0.

Here, all coefficients y;, J; are real. The recursion breaks off with the first index
i =:i, with y,,; = 0, and then the following holds

ip = m = max dim K(g, A).

ProoF. We show (6.5.3.1) by induction over i. Clearly, since |g|| = 1, the
vector g, := q provides an orthonormal basis for K, (g, 4). Assume now that
for some j > 1 vectors qy, ..., g; are given, so that (6.5.3.1) and

Span[ql, RREY qs] = Ki(q, A)

holds for all i < j, and that r; # 0in (6.5.3.1b) for all i < j. We show first that
these statements are also true for j + 1, if r; # 0. In fact, then y;,, # 0, J; and
g;+1 are well defined by (6.5.3.1b), and ||g;,, || = 1. The vector g;,, is ortho-
gonal to all g; with i < j: This holds for i = j, because y;,, # 0, because

Aqj = ;-1 + 0;4; + Vjr19541
from the definition of 9;, and using the induction hypothesis
)’j+1quq1'+1 = ququ - 5qu'qu =0.
For i = j — 1, the same reasoning and A = A¥ first give
'}’j+1‘1j111q1'+1 = qu—Iqu - yquﬂ—lqj—-l = (qu—l)qu =%

The orthogonality of the g; for i < j and Aq;_; = y;-19j-2 + 6;-19j-1 + ¥;4;
then imply (4q;-,)"g; = % = ;, and therefore ¢",q;,, =0. Fori < j — 1 we
get the same result with the aid of Ag; = y;,9;_; + 8:9; + Vi+19i+1:

Ye1di Qje1 = Gi" Ag; = (Aq)"g; =0.
Finally, since span[q,, ..., ¢;] = Ki(g, A) = Kj(g, A) for i < j, we also have
Ag; € K;.1(g, A),
which implies by (6.5.3.1b)
q4;+1 € spanfq;_,, g;, Ag;] = K;14(q, A),

and therefore span([gq,, ..., g;+1] = K;,,(g, A). Since the orthonormal vectors
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41> ---» q;+ are linearly independent and dim K;,,(q, A) < j + 1 we obtain
Kj+l(q’ A) = span[qg,, ..., dj+1]-
This also shows j + 1 < m = max; dim K;(g, 4), and i, < m for the break-off
index iy of (6.5.3.1). On the other hand, by the definition of i,
Ag;, € span[g;,s, q;, ] = span[q,, ..., ¢;,1 = K, (g, 4),
so that, because
Ag; espan[qy, ..., iy1] = Ki11(g, 4A) = K; (g, A) fori <y,

we get the A-invariance of K; (g, 4), AK; (¢, A) = K; (g, A). Therefore iy > m,
since K, (g, A) is the first A-invariant subspace among the K;(g, A). This
finally shows i, = m, and the proof is complete. O

The recursion (6.5.3.1) can be written in terms of the matrices

0 72 0
oy .
Q::=104y..-»9:), J; = & _2 o 5 | l<i<m,
0 ‘ ')’i. 0;

as a matrix equation
AQi=QJ; +10,...,0,%:419i1]
= QuJ: + Vi1 ginrel, i=12..,m,

where e;:=[0,...,0,1]7 € R is the ith axis vector of R’. This equatjon is
easily verified by comparing the jth columns, j = 1,..., i, on both sides. Note,
that the n x i matrices Q; have orthonormal columns, Q7Q, =1, (=i x i
identity matrix) and the J; are real symmetric tridiagonal matrices. Since
i =m is the first index with y,,, =0, the matrix J,, is irreducible, and the
preceding matrix equation reduces to (cf. (6.3.3))

where Q2Q,, = I,,. Any eigenvalue of J,, is also an eigenvalue of A, since
Juz = Az, z # 0 implies x := Q,,z # 0 and

Ax = AQ,z = 0, J,.z = 10,z = AX.

If m = n, i.e,, if the method does not terminate prematurely with an m < n,
then Q, is a unitary matrix, and the tridiagonal matrix J, = Q¥ AQ, is uni-
tarily similar to A.

Given any vector g =: g, with |/q|| = 1, the method of Lanczos consists of
computing the numbers y;,, ,, i=1, 2,...,m, (y, :=0), and the tridiagonal
matrix J,, by means of (6.5.3.1). Subsequently, one may apply the methods of
Section 6.6 to compute the eigenvalues and eigenvectors of J,, (and thereby
those of A). Concerning the implementation of the method, the following
remarks are in order:
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1. The number of operations can be reduced by introducing an auxiliary
vector defined by

u; == Ag; — %9y
Then r; = u; — d,q;, and the number
6 = qi'Aq; = q'u,

can also be computed from u;, since g¥q;_, = 0.

2. It is not necessary to store the vectors g; if one is not interested in the
eigenvectors of A: In order to carry out (6.5.3.1) only two auxiliary vectors v,
w e C" are needed, where initially v := ¢ is the given starting vector with
llgll = 1. Within the following program, which implements the Lanczos algo-
rithm for a given Hermitian n x n matrix A = A¥, vy and w,, k=1,...,n
denote the components of v and w, respectively:

td

wi=0;y:=1i:=1,
1: if y; # O then
begin if i #1 then
for k := 1 step 1 until n do
begin t := v,; v, := W, /y;; Wi := —;t end,;
w:= Av + w; §;:= vHw; w = w — §,v;
m:=ii:=i+1;y:=/wliw;
goto 1;
end;

Each stepi — i + 1 requires about 5n scalar multiplications and one multipli-
cation of the matrix A with a vector. Therefore, the method is inexpensive if
A is sparse, so that it is particularly valuable for solving the eigenvalue
problem for large sparse matrices A = A4,

3. In theory, the method is finite: it stops with the first index i=m <n
with y,,, = 0. However, because of the influence of roundoff, one will rarely
find a computed y,,; =0 in practice. Yet, it is usually not necessary to
perform many steps of the method until one finds a zero or a very small y,,,:
The reason is that, under weak assumptions, the largest and smallest eigen-
values of J; converge very rapidly with increasing i toward the largest and
smallest eigenvalues of A (Kaniel-Paige theory: see Kaniel (1966), Paige
(1971), and Saad (1980)). Therefore, if one is only interested in the extreme
eigenvalues of A (which is quite frequently the case in applications), only
relatively few steps of Lanczos’ method are necessary to find a J;, i « n, with
extreme eigenvalues that already approximate the extreme eigenvalues of A
to machine precision.

4. The method of Lanczos will generate orthogonal vectors g; only in
theory: In practice, due to roundoff, the vectors §; actually computed become
less and less orthogonal as i increases. This defect could be corrected by
reorthogonalizing a newly computed vector §;,, with respect to all previous
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vectors §j, j < i, that is, by replacing §;,, by
Giv1:=qis1 — 21 (qfql'ﬂ)qj-
f=

However, reorthogonalization is quite expensive: The vectors §; have to be
stored, and step i of the Lanczos method now requires O(i-n) operations
instead of O(n) operations as before. But it is possible to avoid a full re-
orthogonalization to some extent and still obtain very good approximations
for the eigenvalues of 4 in spite of the difficulties mentioned. Details can be
found in the following literature, which also contains a systematic investiga-
tion of the interesting numerical properties of the Lanczos method: Paige
(1971), Parlett and Scott (1979), and Cullum and Willoughby (1985), where
one can also find programs.

6.5.4 Reduction to Hessenberg Form

It was already observed in Section 6.5.1 that one can transform a given n x n

matrix A by means of n — 2 Householder matrices T; similarly to Hessen-
berg form B,

A:=A0—’A1—>"'—>An_2=B, A,'=T,'_1A,~_17-,:.

We now wish to describe a second algorithm of this kind, in which one uses
as transformation matrices T; permutation matrices

o 1

rs

! 1
and elimination matrices of the form
= _‘

1

v 1 - gl

i L 1]
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These matrices have the property

P l=P,,
[ 1 A
1
Gl =
(6.5.4.1) ; ey, 1
L 1, B

A left multiplication P;'A4 of A by P,;' = P, has the effect of interchanging
rows r and s of A, whereas a right multiplication AP, interchanges columns
r and s of A. A left multiplication G; 'A4 of A by G; ' has the effect of
subtracting [,; times row j from row r of the matrix Aforr=j+ 1,j +2,...,
n, while a right multiplication AG; means that [,; times column r is added to
columnjof Aforr=j+1,j+2,...,n

In order to successively transform A to Hessenberg form by means of
similarity transformations of the type considered, we proceed as follows: We
set A = A,, and we assume inductively that A;_, is already a matrix whose
first i — 1 columns have Hessenberg form:

* | x| . . . % W

(6542) Ai— 1 =
0 0 *|* *
[0 . * |
—~—
i-1
—Bl—l d /‘ii—1 Xitq,i

0 a

e
i
K

In order to compute a matrix 4; = T; '4;_, T; of analogous form, one
chooses as matrix 7; a matrix of the type

T.=P, 161, Ti—lzGi_+11Pr_,il+la rzi+l,
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in fact such that (cf. Section 4.1 on Gauss elimination)

d d 5
T 6 = (o], a=|:
a a 0

To this end, one must first determine the absolutely largest component of a,

lo;| = max Jo|], r=i+ 1

i+1<j<n
Thereupon, one interchanges rows rand i + 1, as well as columns rand i + 1
of A;_,, i.e, one computes
r.— p—1
A= Pr.x’+1Ai~lPr.i+l’

so that now the dominant element of a is in the first position. Denoting the
resulting matrix by A’ = [«}], one proceeds to form the matrix G;,, by
means of the quantities

| % iy, 40
igg= < H